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Abstract

Autonomous vehicles industry has been growing so fast in the past few years.
Despite this progress, there still exists a lack of robust tests for driving platforms.
On the other hand, real-world testing not only is expensive and dangerous for
public, but also due to the rare nature of dangerous scenarios, will require billions
of miles in order to statistically validate performance claims. In this paper, first we
implement Determinantal Point Processes (DPPs) to create the most diverse and
challenging driving scenarios to minimize required testing time of autonomous cars.
Second, since for high number of scenarios, real human study is expensive and time
consuming, we provide a model of human behaviour to reduce testing cost and time.
We train a non-linear and high dimensional stochastic human driving model using
GAIL algorithm to validate performance of our sampling results using experiments.
Using the trained model in the experiments, we show that DPPs sampling generates
more diverse and challenging scenarios than naive Monte Carlo.

1 Introduction and Related work

In the past few years, there has been a huge progress in autonomous cars industry. Testing AVs in real
environments, which is the most straightforward validation framework for system behavior, requires
prohibitive amounts of time due to the rare nature of challenging situation. [1]. In fact, under some
scenarios AVs not only need to drive hundreds of billions of miles to create enough data to clearly
demonstrate their safety [2], but also formally verifying AV algorithm’s “correctness” is difficult
[3,4,5,6].

Even though researchers have developed some computational methods for autonomous vehicles
driving, testing and verification [7, 8, 9, 10, 11], there exist few works that test the autonomous
vehicle based on scenarios from the real world data. In this paper, we use determinantal point
process (DPPs) to extract scenarios from a real world data set in order to evaluate autonomous
vehicle platforms. DPPs are a class of repulsive point processes that were introduced to machine
learning community by a tutorial paper [12]. They have been used in batch generation for mini-batch
diversification [13], improving stochastic gradient descent [14] and a couple of other applications
in the past few years [15, 16, 17, 18, 19, 20, 21]. Since DPPs samples provide the most diverse and
challenging driving scenarios, they reduce the necessary computation time for performance evaluation
of the autonomous system.

In order to validate our sampling results, we use a human driving model to drive a car in traffic.
Unfortunately, most of the algorithms that have been provided for modelling human driving behaviour
are linear and deterministic (whereas human behaviour is nonlinear and stochastic), which leads
to low performance in predicting human actions. In contrast, we implement a nonlinear and high
dimensional model to imitate human driving policy. Then, we use this model to test and evaluate our
scenario sampling methods.
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2 Dataset and Features

The data we use is from the Next-Generation Simulation (NGSIM) data set. NGSIM contains highway
driving trajectories for US Highway 101 and Interstate 80, and consists of 45 minutes of driving at 10
Hz for each roadway. The US Highway 101 data set covers an area in Los Angeles approximately
640 m in length with five mainline lanes and a sixth auxiliary lane for highway entrance and exit. The
Interstate 80 data set covers an area in the San Francisco Bay Area approximately 500 m in length
with six mainline lanes, including a high-occupancy vehicle lane and an on-ramp.

Traffic density in the data set transitions from uncongested to full congestion and exhibits a high
degree of vehicle interaction as vehicles merge on and off the highway and must navigate in congested
flow. The diversity of driving conditions and the forced interaction of traffic participants makes these
sources particularly useful for behavioral studies. The trajectories were projected to lanes using
centerlines extracted from the NGSIM CAD files. Cars, trucks, buses, and motorcycles are in the data
set, but only car trajectories were used for model training. The raw data set consists of 11,850,526
rows and 25 columns. Data was collected through a network of synchronized digital video cameras.

For each vehicle, 66 features are extracted and passed to the policy as the observation. The policy
outputs longitudinal acceleration and turn rate values as the vehicle action. These values are used
to propagate the vehicle forward in time. Features include 20 lidar distances, 20 lidar distance time
derivatives, and several ego and leading vehicle parameters (e.g. relative offset, relative heading,
velocity, vehicle length, vehicle width, lane curvature,longitudinal and lateral acceleration, jerk, local
and global turn rate, local and global angular rate, time gap, distance to left road edge, distance to
right road edge, acceleration of vehicle in front of fore vehicle).

3 Methods

3.1 Markov Decision Processes

An infinite horizon MDP is defined by the tuple (S, A, T, R, ), where S is the state space, A is
the action space, T is the transition model, R is the reward function and -y is the discount factor.
A stochastic policy 7 : S — P(A) maps each state to the probability of taking each action.
The objective in an MDP is to find a policy that maximizes the expected value of each search
Vz(s) = Ezlgt|st = s]. APOMDP is a kind of MDP in which the agent receives partial information
about the state at each time step. POMDP adds an observation space O and observation model
Z : S — P(O) to the problem.

3.2 Reinforcement Learning

Reinforcement learning (RL) assumes that drivers in the real world follow an expert policy mg whose
actions maximize the expected, global return

weighted by a discount factor v € [0, 1). The local reward function r(s;, a;) may be unknown, but
fully characterizes expert behavior such that any policy optimizing R(7,r) will perform indistin-
guishably from 7.

The learned policy must be able to capture human driving behavior, which involves:

e Non-linearity in the desired mapping from states to actions (e.g., large corrections in steering to
avoid collisions caused by small changes in the current state).

¢ High-dimensionality of the state representation, which must describe properties of the ego-vehicle,
in addition to surrounding cars and road conditions.

e Stochasticity, because humans may take different actions each time they encounter a given traffic
scene.



To address the first and second points, we represent all learned policies 7y using neural networks. To
address the third point, we interpret the network’s real-valued outputs given input s; as the mean
of a Gaussian distribution. Actions are chosen by sampling a; ~ mg(a¢|s;)-

3.3 Imitation Learning

Our goal is to imitate human behaviour to learn his policy in driving. We consider the input data as a
sequence of state-action pairs that result from a policy. Although 7 (s, a;) is unknown, a surrogate
reward (s, a;) may be learned directly from data. Generative Adversarial Imitation Learning
(GAIL) algorithm [22] tries to match a generator (G) with state occupancy distribution of the human
policy. In GAIL, we have a discriminator D, which tries to distinguish the learned policy 7y from the
human policy 7z . GAIL objective function is

mgin max Erzlog(Dy(s,a)) + Er,log(l — Dy(s,a))

Generator (G) tries to fool discriminator (D) with state-actions that are not in the data set, but are
very close to human behaviour. In order to fit 7g, a surrogate reward function can be formulated from
the previous equation as:

7(st, ar|1p) = —log(1 — Dy (s, a))
After sufficient training, the generator (G) learns to imitate the human policy.

3.4 Sampling

We use detenminantal point process for sampling scenarios. DPPs are a class of repulsive point
process that sample diverse vectors from the data set while considering value of a score function for
each vector. We also use Monte Carlo sampling in order to compare the results with DPPs.

3.5 Neural Network Architecture

We use recurrent neural network (RNN) policies, consisting of 64 Gated Recurrent Units (GRUs).
The observation is passed directly into the RNN without any initial reduction in dimension. We
use recurrent policies in order to address the partial observability of the state caused by occluded
vehicles. Policy optimization is performed using an implementation of TRPO from rllab, with a step
size of 0.01. For training, we had 1000 iterations with a discount of 0.95 and a batch size of 10000
observation-action pairs.

3.6 Metrics
3.6.1 Safety Metric

Minimum time to collision (TTC) is defined as the time it would take for two cars to intercept one
another if they maintain the current heading and speed [23]. We use TTC as the safety measurement
(lower TTC means more challenging scenario). The TTC between the ego-vehicle and vehicle ¢ is
defined as
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where 7, (t) and 7, (t) are distance between vehicles and its time derivative, respectively.

In this paper, vehicles are described as oriented rectangles in the 2D plane. Since we are interested in
the time it would take for the ego-vehicle to intersect the polygonal boundary of another vehicle on
the road, we utilize a finite set of range and range measurements in order to approximate the TTC
metric. For a given configuration of vehicles, we compute N uniformly spaced angles 61, ..., O yin the
range [0, 27] with respect to the ego vehicle’s orientation and cast rays outward from the center of the
ego vehicle (Figure 1).



Figure 1: Depiction of lidar sensor input used for GAIL model

For each direction we compute the distance which a ray could travel before intersecting one of the
M other vehicles in the environment. These form N range measurements S, ..., sy . Further, for
each ray s; , we determine which vehicle (if any) that ray hit; projecting the relative velocity of this
vehicle with respect to ego vehicle gives the range-rate measurement $; . Finally, we approximate the
minimum TTC by:

3.6.2 Diversity Metric

We assume the Euclidean distance between data samples as the diversity metric. However, we note
that our framework extends to other cases, as well. With the Euclidean distance assumption, we use a
Gaussian kernel, which is known to be PSD, to directly construct the S-matrix:
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Diversity is measured based on determinant of K matrix.

3.6.3 Metric for Experiment Results

To quantify the undesirable traffic phenomena that arise out in challenging driving situations, average
acceleration of the ego vehicle in the first 0.3 seconds of each scenario is calculated. Like TTC metric,
lower acceleration (higher negative value) means more challenging scenario.

4 Experiments and Results

For sampling and generating scenarios from the data set, DPPs and Monte Carlo were used. TTC
and diversity are calculated and for both methods. DPPs perform better than naive Monte Carlo,
regardless of the sample size (Figure 2).
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Figure 2: DPPs and Monte Carlo sampling results: (Left) det(K) of DPPs samples is higher (more
diverse scenarios) (Right) TTC of DPPs samples is lower (more challenging scenarios)



A generator is trained and the learned weights for policy has been used to drive a car (Figure 3). The
full video is available on the Github page of the project. The generator is used to compare results

Figure 3: Driving a car using the learned policy (blue, green and red line are lidar measurements), the
full video is available on the Github page of the project

of two sampling methods in the simulated environment. Samples from each method are fed to the
environment and the learned weights were used to drive a car in each case. Average acceleration
of the car in the first 0.3 second of driving is calculated for both methods. Hard-brake cases (high
negative acceleration) occurred more in DPPs samples (Figure 4). Therefore, higher performance
of DPPs in generating more challenging scenarios is validated using the trained generator (G) that
imitates human behaviour.

Even though the current implementation of the human model is stochastic, better stochastic models
can be built based on this model. Furthur details can be found in the future work section.
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Figure 4: Normalized average acceleration in the first 0.3 seconds of scenario for different sample
sizes: human model have higher negative acceleration (more challenging scenarios) in (Red Triangles)
DPPs samples than (Blue Circles) Monte Carlo



5 Conclusion and Future Work

In this paper, we provided a novel method to extract near accident scenarios from a driving data set and
tested performance of our algorithm. For the evaluating the samples, we trained a high dimensional
and non-linear stochastic driving model based on imitation from human driving behaviour. Our work
has direct application in testing of autonomous vehicle algorithms and evaluation of their performance
in a fast, safe and robust manner.

For the future work, an ensemble of generators (£¢,7 = 1, ..., m, where £ is the learned weight of
the i*" generator) can be trained and a distribution P over ¢ can be modeled using a (multivariate
normal) parametric bootstrap. The models £ are high dimensional (¢ € RY, m < d) and graphical
lasso can be used to fit the inverse covariance matrix for the ensemble. In this way, a new stochastic
model for generator can be obtained and the covariance matrix can be sampled using DPPs in order
to get the most diverse driving behaviours.

6 Contributions

The author did not have any other team members.

Code

Github link for the code: https://github.com/FaridSoroush/Driving
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