DeepRemix: An Automated Remix Video Generator

Rey Barceld
Department of Computer Science
Stanford University
rbarcelo@stanford.edu

Abstract

DeepRemix is a deep learning pipeline which maps arbitrary videos to "remix"
videos which match them in entities contained and actions performed. This is
achieved in two steps: caption generation (accomplished with a CNN/LSTM) and
caption matching (accomplished with NLP). Results are compared across a variety

of caption matching schemes.

1 Introduction

A remix video is a type of video in which
widely-recognized media (such as music videos
and movie scenes) are recreated using stock
footage. Traditionally, remix videos are assem-
bled by hand, with massive amounts of labor
required to pair each source clip with a remix
clip (aka stock footage) that contains similar en-
tities performing similar actions. In this paper,
I propose DeepRemix: a method to generate
remix videos automatically. DeepRemix’s fun-
damental task is as follows: given a source clip
of 3 seconds, it outputs a remix clip that matches
the source clip’s entities and actions.

DeepRemix performs this clip-to-clip
matching in 2 stages: caption generation and
caption matching. In caption generation, Deep-
Remix generates a caption for the clip using a
CNN/LSTM encoder-decoder network called
im2txt that will be described below; in caption
matching, it matches the source clip’s caption
with the most appropriate caption of a remix
clip. Once clip-to-clip matching is implemented,
DeepRemix can also perform video-to-video
matching for videos of arbitrary length.

Note: this project is being submitted for
both CS 229A and CS 230. The caption gener-
ation component is my submission for CS 230

and the caption matching component is my sub-
mission for CS 229A.

source video
extract

1 frame per
3 seconds
of video
model
run each
frame
through a : = o~
LSTM/CNN e Ié @
a woman Soratnicl a group of
harate't laying ona T cheerleaders
sgntence per bediwithia a christmas tree dancingion &
frame book football field
matching reclining on a a group of cheerleaders
map source B 5 dancersona performing on
X ed with a
ca_ptuon tg tablat stage a basketball
remix caption court

remixvideo I EEEEE SN EEEEEEEEEN

map each

caption to
remix clip and
concatenate

Figure 1: The DeepRemix pipeline from source

CS230: Deep Learning, Winter 2018, Stanford Unlversngptlo Leariersl(\),l 0 C%iir)lelfn ma g 2}}?&?8:

2 Datasets

DeepRemix uses two datasets: a set of images
labeled with captions used to train the image
captioning model, and a set of 3-second videos
of common actions used as the bank of remix
videos.

The image dataset is the Microsoft
COCO dataset: a set of over 300,000 images an-
notated with 80 different object categories and
with bounding boxes for each object. Object cat-
egories include people, various kinds of animals,
about a dozen foods, and a handful of household
appliances.[1] The COCO dataset was used as
the input to the im2txt model

The video dataset is the Moments in

Dataset examples

Figure 2: The COCO dataset.

Time (MIT) dataset: a set of 1 million 3-second videos, each labeled with the action that oc-
curs in them.[2] Actions include singing, dancing, and calling. Note that DeepRemix does not
actually use the MIT labels; instead, it extracts frames from each clip and uses im2txt to caption them,

as described below.

3 Methods

3.1 Caption Generation and the im2txt Model

DeepRemix’s first step is to map a video to a
sequence of captions that describe it. For this
part, I used im2txt, an image caption generator
made by Google Research and implemented in
TensorFlow.[3] im2txt’s architecture is shown
at right.

Im2txt is an “encoder-decoder” network:
it first uses a CNN to encode an image into a
high-dimensional vector, then uses a LSTM to
decode that vector into natural language rep-
resentation. More specifically, im2txt is given
an input image [and is trained to maximize
the likelihood of producing a target sequence of
words S = 57,55, ... that accurately describe
the image.

The CNN/LSTM combination is well-
suited to image captioning because the problem
bridges the fields of computer vision and natural
language processing. CNNs are optimized to

Iluxw(sw)] [zP(S)] [rogpntsn |

T

m B o]

1 1

> = = >

T

é B

Figure 3: im2txt, the model used for image cap-
tioning. It uses a CNN to encode the image into
a vector embedding, then a LSTM to decode the
vector embedding into a sentence caption.

process arrays of pixel values, while LSTMs are designed to maximize sequences of words. Since
training im2txt takes on the order of weeks, I used a pretrained model trained for 2 million iterations

and downloaded from GitHub.[4]

Caption generation occurs twice: First, during preprocessing we caption all the frames of clips
in the remix bank. Then, at runtime we caption all the frames of the source video. That way, we can
match source clips and remix clips by the similarity of their captions. (This matching process will be

described in the next section.)

For the remix video preprocessing, I used OpenCV to extract the middle frame from each
3-second MIT video. I ran im2txt on each frame to generate a caption, then made a CSV file of

{caption, clip filename} pairs.

At runtime, the video is split into 3-second clips using a tool called moviepy.[5] As in prepro-
cessing, OpenCV extracts the middle frame from each clip and feeds it into im2txt, generating a
caption. Below are some real image/caption pairs.

r‘-v,-

3 -

-"’“.’ e

J]
.‘u'ﬂ..b

a black and white a cat sitting on top of a woman in a black
photo of a motorcycle a white plate shirt and a black tie

Figure 4: Real image/caption pairs. Notice that entity captioning is relatively expressive ("cat",
"woman", "shirt" are correct but "motorcycle" is not). Action captioning is much less expressive
("sitting" is the only action in all 3 captions).

3.2 Caption Matching

Now that we have a caption for our source frame and a set of captioned images, it’s time to match
them. I explored 3 different approaches to caption matching: entity matching, action matching,
and bleu matching.

For entity matching, I used NLTK to extract all entities from a source caption.[6] For example,
a caption like "people standing next to a spinning top" would return the entities (' people" "top").
To match from these source entities to a remix caption, I iteratively searched for remix captions
with the same captions, in order of rarity. If, for example, there were 10,000 remix captions with
the word "people” but only 2,000 with the word "top", I would first search for captions with the
word "top". Then, I'd look for a caption containing both words; if not, I'd use one with "top". 1
learned experimentally that prioritizing rare entities made the results more expressive; you wouldn’t
be that impressed if I matched a picture of people to another picture of people, but you might be more
impressed if I matched a picture of a ring-tailed lemur to a picture of a ring-tailed lemur.

The action matching process was nearly identical, except I used NLTK to extract the verbs
from each caption instead.

For the BLEU matching process, I calculated the BLEU score between the source caption and
every caption in the remix bank. The BLEU score is an algorithm used to assess the similarity of
machine translations; I used NLTK for this as well.

4 Experiments/Results/Discussion

To get quantitative feedback on my remix videos, I created a Google Form and sent it out to a wide
group of people. Respondents were shown 4 pairs of clips. Each pair of clips contained a source clip
and a remix clip generated by one of the following caption matching schemes: entity, action, bleu,
and human. (The human scheme was the clip I felt best matched the entity and objects of the original
clip.) Respondents were asked how well the clips matched, assessed against three matching metrics:
how well the entities in each clip matched, how well the actions in each clip matched, and how well
the clips matched overall. (The third question, how well the clips matched overall, was deliberately
left vague so I could assess what kinds of videos people intuitively thought "matched" and whether
the entity/action definition was accurate to this intuition.) Responses ranged from 1 (the clips did not
match at all) to 5 (the clips matched extremely well). They were also asked how well the caption
matched the source clip.

Below are the performances of the 4 matching schemes against the 3 different matching metrics,
averaged across the 3 clips respondents watched. (In case you’re curious, the clips were taken from
the "Despacito” music video, the "Gangnam Style" music video, and the "Thank u, Next" music
video. I chose music videos because they tend to contain a wide array of objects not found in a
typical dialogue-heavy video, therefore increasing the expressivity of the captions and hopefully of
the matching).

Performance of different matching schemes on all clips

5 B entity action bleu—{l}-human

entity action overall

Performance

Matching metric

Figure 5: Performance of the matching schemes {entity, action, bleu, human} against the matching
metrics {entity, action, overall}. Performance of 1 means the source and remix clip matched "not
at all" against the given metric, while performance of 5 means the source and remix clip matched
"extremely well".

Here are some sample source video / remix video matchings, as generated using the bleu
matching scheme.

Figure 6: Source clips (top) and their corresponding remix clips (bottom).

As can be seen, the human caption matching scheme outperformed the automated schemes on
all metrics, which means there’s still improvement to be made! However, it’s worth noting that the
highest possible performance, which is by a human, still does not exceed "moderately" good matching.
This shows that remix video matching is a hard and inherently subjective problem; responses had a
wide variance which indicates that people don’t tend to agree on which clips match.

It’s worth noting that the entity matching scheme significantly outperforms the action matching
scheme on the entity matching metric, while the action matching scheme also significantly outper-
forms the entity matching scheme on the action matching metric. To boil that down, the fact that
schemes which encode a certain type of information (eg. entity scheme) do better at retaining that
information (eg. on the entity metric) than schemes which do not encode that type of information
(eg. action scheme) indicates that the schemes actually are encoding that information to some degree.
The entity scheme actually encodes some information about the entities in the image, and the action
scheme actually encodes some information about the actions in the image.

5 Conclusion

We’ve seen that by using a combination of computer vision and natural language processing, it is
possible (but by no means a solved problem!) to create mappings from videos to other videos with
similar entities and actions. My hope is that this system will be useful to documentarians or other
filmmakers who need quick access to specific stock footage or who want to circumvent copyright
restrictions by using open source footage which matches their desired footage.

In the future, I would like to perform video classification instead of image captioning in order
to match clips. I think this will better capture actions and enable the remixing to be more expressive.
I"d also like to conduct some user studies to determine exactly what factors cause people to consider
whether two clips "match"; perhaps my hypothesis that similar actions and entities make for a good
matching was incorrect.

References

[1] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." European conference on computer
vision. Springer, Cham, 2014.

[2] Monfort, Mathew, et al. "Moments in time dataset: one million videos for event understanding."
IEEE transactions on pattern analysis and machine intelligence (2019).

[3] Vinyals, Oriol, et al. "Show and tell: Lessons learned from the 2015 mscoco image captioning
challenge." IEEE transactions on pattern analysis and machine intelligence 39.4 (2017): 652-663.

[4] https://github. com/KranthiGV/Pretrained-Show-and-Tell-model

[5] https://zulko.github.io/moviepy/

[6] https://wuw.nltk.org/

[7] Papineni, Kishore, et al. "BLEU: a method for automatic evaluation of machine translation." Pro-

ceedings of the 40th annual meeting on association for computational linguistics. Association for Computational
Linguistics, 2002.

