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1 Introduction

This project utilizes the high-resolution footage of claybox experiments (Figure 1) that analogues the
development of strike-slip faults (SSF) at surface due to displacement at depth [1]. This dataset is
attractive because it enable us to train a model that understand fault behavior from from the beginning
to the end. In a real-world context, we can only see a single stage, and we can use the model to
predict the fault maturity from a single observation in time.

Additionally, inelastic deformation via large stress/strain is not well understood. We cannot prescribe
exact equations to explain failure behaviors. This project hopefully would be able to relate relevant
parameters in higher dimensions to better predict different evolution stages of strike-slip faults.

Figure 1: Claybox experiment. A box of clay is subject to external, mechanical deformation while
imaged from above. Fault maturity increase (stage o - 3) with subsurface movement

2 Related work

There is no existing ML, DL study on fault stage prediction or on this dataset. Simple linear regression
and best performing ridge linear regression with tuned regularization are established for baseline
performance. Linear Regression is extremely overfit to training dataset (overdetermined system
128x32x3 features for 6,000 training samples). Slightly improved generalization with regularization.
But model does not perform well on dev-test sets (Figure 2).

3 Dataset and Features

3 separate claybox experiments are ensembled with criteria on their distributed shear zone (1.5cm)
base boundary condition, motor speed =0.5cm/min, and both deep and shallow fault depth



Train Dev-Test Dev-Test

Regularization MSE MSE Bracket Accuracy
Linear Regression None 0.00 0.40 53%
Ridge Regression a=08 0.03 0.04 61%
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Figure 2: Baseline linear model with and without L2 regularization.

Labeling Strategy Faults are categorized in 4 discrete stages (0,1,2,3) [1]. Alternatively, I use a
continuous labeling technique, only label near transition + midway, then interpolate the rest

3.1 Data Processing

e Raw physical values (.mat) of shear strain, Au, Av are (1) normalized for DataGenerator
(and also (2) scaled for data labeling). Clipped raw image to 128x32 subimages ( 25%
overlap), 7,500 subimages (c,u,v), 2,500 stacked images/experiment (Figure 3).

e Split T'rain : Dev : Test = 0.85: 0.10 : 0.05

e Image Augmentation: I experimented and found augmentation combination that best gen-
eralizes SSF geometry related to input size and characters: zoom_range=0.1, horizon-
tal_shift and vertical_shift=0.2, horizontal and vertical flips, all are randomly applied using
keras.ImageGenerator
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Figure 3: Model input comprised of 3 channels of physical values representing geometry and slip.

4 Methods

4.1 2D-Neural Network Architectures and Hyperparameters

Both shallow and deeper CNNs (added dilation) are explored(Figure 4).Hyperparameters explored
are *number of layers, NC_filter, learning rate, *dilation_rate, BN_momentum, *scaling of image
augmentation. The asterisk indicated parameters that influence more on model performance than
another.
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Figure 4: CNNs Model Architecture

4.2 Bracket Loss Function and Bracket Accuracy

MSE is a reasonable metrics for regression problem. However, for this dataset, I defined a ‘Bracket
Loss’ (Figure 5), which still incorporate MSE but also add extra penalization to predictions that fall

outside their characteristic groups (g0, g1,g2, g3). Co-efficient terms or choices of adding alone or
adding with square are tuned during training.
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Figure 5: Defining Bracket Loss Function



5 Experiments/Results/Discussion

5.1 Experiments and Results

Tested Models Params MSE Bracket Loss | Bracket Accuracy
Train | Test | Train | Test Train Test
2D CNN : shallower AdamOptimizer, | 0.038 | 0.024 | 0.029 | 0.048 | 81.19% | 85.82%
Bracket Loss Lr = 53-3
2D CNN : deeper Epoch=50, 0.031 | 0.022 | 0.036 |0.026 | 87.55% | 89.80%
Dilation + Augmentation + BracketLoss | Batch-size = 32

2D CNN : deeper momentum = 0.8 5557 70.020 | 0.051 | 0.028 | 74.60% | 67.55%

Dilation + Augmentation + MSE

The deeper CNN is the best performing model as measured by test accuracy and loss. We choose to
use the bracket loss as the main objective of this project for both shallow and deep CNNs. The third
experiments using basic MSE on deeper CNNs show poor performance, indicating that the bracket
loss better reflects my scientific objective.

Train Dev-Test Dev-Test
Regularization MSE MSE Bracket Accuracy
Linear Regression None 0.00 0.40 53%
Ridge Regression a=08 0.03 0.04 61%
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5.2 Grad_CAM Attention Map

T used a Github repo [3] as a starter code for visualizing the last convolutional unit that influences the
prediction [2] (Figure 6).
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Figure 6: GradCAM attention map from shallower and deeper CNNSs.



5.3 Discussion

e The deeper CNNS outperforms shallow CNNs, due to image augmentation designed to
scaled and shift faults away from center dilation_rate applied to help handle it.

e GRAD_CAM Attention [2] helped identify models during development that did not look at
the faults to make predictions. It will be important for future architecture choices. Though,
deeper CNNs perform better, the shallower CNNs’ attention maps are more interpretable.

6 Conclusion/Future Work

The CNNs models are able to predict fault maturation stages with greater than 86% and 89%
accuracy in shallower and deeper models, a significant improvement from baseline.

GRAD_CAM attention maps are useful to understand the model I build and work with inside out,
and will influence choices of model architecture and hyperparmeters

Future Work I hope to better understand how CNNs make prediction, go deeper into attention map,
hopefully to identify empirical relationships for fault deformations. If possible, try to detection and
localization (YOLO) problems based on magnitude of displacement, which will remove the subjective
labeling stage from geologists. Lastly, apply model to real-world example with appropriate dataset
such as submarine topography, terrestrial LiDAR .

7 Code

The code to data preparation and my CNNs models are available on Github:
https://github.com/laainam/data_prep
https://github.com/laainam/model
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