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Abstract

A large variety of single-nucleotide polymorphisms in the genome are associated
with specific diseases. Most such genomic variants occur in non-coding DNA
sequences and are not directly involved in protein variation. This makes it challeng-
ing to understand their function. In this study, we develop a deep learning approach
to predict functional variants using epigenetic markers as predictors. Our models
outperform previously established benchmarks on the GM 12878 lymphoblastoid
dataset.

1 Introduction

Functional genomics studies the relationship between specific regions of the genome with actions
occurring within cells or tissues such as transcription, using the large quantities of molecular and
genetic data produced by modern biotechnology. An important application is in understanding
the effects of single-nucleotide polymorphisms (SNPs) in genomic regions associated with disease.
Because the majority of such regions identified by genome-wide association studies (GWAS) are
located in non-coding sequence regions, predicting the functional consequences of these variants is a
challenging problem. Furthermore, the functions linked to these variants are often highly specific to
certain cell and tissue contexts (1).

Here we propose a deep learning approach to predict functions of noncoding variants using cell/tissue-
type specific epigenetic annotations available from the Encyclopedia of DNA Elements (ENCODE).
We evaluate functional scores from dense neural networks with modifications and find that they
outperform previously published models.

2 Related work

Over the past few years, a number of approaches toward understanding functional noncoding variants
have been made. Sequence models using methods such as support vector machines (2) and deep
learning (3) have shown the ability to predict many impacts of noncoding variants including chromatin
effects and DNase I sensitivity. More specific to the current problem, recent attention has focused
predicting cell- and tissue-specific functional effects of the noncoding variants (1; 4). In particular,
He et al. utilized site-specific epigenetic information as predictors in a semi-supervised elastic net
model (1).
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3 Dataset and Features

3.1 Data Overview

The GM 12878 lymphoblastoid massively parallel reporter assay (MPRA) contains 693 experimentally
confirmed functional genomic variants and 23000 negative variants. These labels were used as the
gold standard for this study. The positive variants are distributed across the 22 somatic chromosomes,
somewhat proportionally to chromosome length.

The genomic variants in the GM12878 dataset were merged with epigenetic annotations from
ENCODE, to produce 1016 features for each non-coding site. The features correspond to eight
epigenetic markers assessed in 127 different cells and tissues, and include DNase I hypersensitivity
and histone methylations. The epigenetic annotations are continuous non-negative values representing
p-value scores for each epigenetic marker. The goal is to predict the label of each variant using these
features.

In addition, I extracted 19bp DNA sequences, centered at each variant, in an attempt to build a
predictive convolutional sequence model?.

3.2 Data Setup

The dataset was first randomly split into train and test sets in a 85%-15% ratio. For model validation,
the train set was further randomly split into train (80%) - validation (20%) sets. This procedure was
repeated three times for each model, and the validation metrics were averaged over the iterations.

The metrics used for evaluation were chosen based on two factors: First, the GM 12878 dataset has
heavy class imbalance. In addition, the use-case of the models would be to provide scores indicating
relative likelihood of function across the genome. Therefore, we are interested in probabilistic outputs
rather than prediction accuracy. The metrics chosen are average precision-recall (AUPR) and area
under ROC curve (AUROC).

4 Methods

4.1 Benchmarks

Two benchmarks are used to compare against future model development. To contrast my results
against the current state-of-the-art, I have obtained benchmark scores from He et al., which uses a
semi-supervised elastic net classifier named *GenoNet’ (1).

In addition, I implemented a logistic regression with Ly regularization, set using 3-fold cross-
validation over the training set. This provides a relatively simple baseline to compare the performance
of more complex neural network models.

4.2 Neural network models
The following models were implemented:

1. Dense network (Baseline): Dense neural network with 2 hidden layers (676 and 36 nodes),
L5 regularization of 1.3e-6, and learning rate 8e-5. The binary crossentropy function was
weighted 3x for positive class.

2. Dense network with dropout (Dense): The model uses 2 hidden layers (400 and 250 nodes),
dropout rates 0.47 and 0.6, Lo regularization of 1.8e-6, and learning rate 0.00017.

3. Dense network with virtual adversarial training (Dense+VAT): This model uses the virtual
adversarial training (VAT) method from Miyato et al. (5). This method approximates the
adversarial direction of the fitted model using approximation of the Hessian. The model adds
aregularization term with respect to current model predictions and the stochastically derived
adversarial direction, using the same architecture as the Dense model. L, regularization
was re-tuned to be 6.7e-8.

21 one-hot encoded the sequences and attempted 1-D convolutions of varying filter size, but they did not learn
the data well.



Dense +
VAT

Partially
connected

4. Partially connected network (PC Net): The epigenetic features are grouped into 127
cell/tissues. Therefore I constructed a more parsimonious model by routing the 127 signals
for each epigenetic marker into separate dense layers with 100 units. Then these units are
stacked together into standard dense layers. The intuition is that there is potential redundancy
for a given marker between cells/tissues, and this approach forces each partial layer to derive
"summary statistics" for each cell/tissue. The model has a dense layer of 180 units, dropout
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of 0.48, and learning rate of 0.00027.

All models were trained for 25 epochs with a batch size of 256 with the Adam optimizer. Models were
implemented in Keras and code is available at github.com/£116180/functional_variants.

Table 1: Average validation and test metrics for each model.

Avg. validation

Test set

Model AUPR AUROC AUPR AUROC
Logistic 0.259 0.764  0.228 0.740
GenoNet 0.251 0.740  0.222 0.728
Baseline 0.243 0.711  0.203 0.699
Dense 0.266 0.761  0.232 0.747
Dense+VAT  0.265 0.753  0.226 0.750
PC Net 0.275 0.769  0.228 0.750

4.3 Hyperparameter search

Iterative random search was used to develop the model architecture and then to tune hyperparameters.
First I allowed all parameters, including number of hidden layers and hidden units, to randomly vary
for 300 iterations. Then, based on the results, I narrowed down the architecture options. I found that
adding and tuning dropout resulted in a significant improvement in model stability, so I conducted
another random search with dropout. Finally, the Dense + VAT and PC Net models were tuned with
the same architecture as the Dense model. I randomly varied the VAT € hyperparameter and the
partial layer architecture for another 50 iterations and chose the best validation performance as the

final models.



Figure 2: t-SNE on dataset, with Dense net results
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AUPR was used as the primary optimization metric.

5 Results and Discussion

All the tuned deep learning models with dropout outperformed the benchmarks on the test set, with
higher AUPR and AUROC (Table 1). The baseline dense network (without dropout) was very unstable
over training and seems to not generalize well. Adding modifications to the tuned Dense network
did not significantly change results. While the PC Net achieved the best results on average in the
validation set, it was not the clear best on the test set, suggesting that the tuning may have led to
overfitting. Dense+VAT does not lead to a performance gain over Dense that justifies the additional
computation time.

I conducted analysis of the predicted probabilities generated by the Dense network. Figure 2 shows a
lower-dimensional representation of the epigenetic data. Functional variants can in some locations be
visually separated from the negative variants in the low-dimensional embedding. Comparing the true
labels with the predicted labels, we see that the Dense network is successfully able to learn aspects of
the underlying data manifold, in particular at high values of tsne-1.



Finally, I wanted to check if there was a significant pattern in AUPR across different chromosomes.
According to Figure 3, there are significant differences. However, there are few positive samples
(105) in the test set, so there is inherently noise. The number of positive cases to learn from in the
training set also varies widely, but there does not appear to be a systematic pattern between the two
factors. Therefore, lack of training examples in a given chromosome does not appear to relate to test
set performance.

6 Conclusion

The models presented above show that dense networks have the ability to infer function in non-coding
genomic variants. The tuned models outperform the benchmarks on the GM 12878 dataset.

In the future, we aim to apply semi-supervised learning with the VAT technique to leverage the
manifold shape of epigenetic information from random positions across the genome. We have also
identified additional epigenetic features that could be included in the models to potentially improve
performance.
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