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1 Abstract

Diabetic retinopathy occurs when retinal blood ves-
sels begin to leak, resulting in blindness. Because early
detection of DR is vital in preventing permanent damage,
our goal was to develop a model that can accurately and
quickly detect DR severity. In this paper, we propose a
deep learning approach to automatically detect the stage
of diabetic retinopathy in digital color fundus photographs.
Specifically, this approach feeds augmented retinal pho-
tographs into a DenseNet CNN and predicts, on a scale
from O to 4, the extent of DR present. Because a com-
mon problem in the medical technology field is lack of
interpretability, our model also generates a Class Activa-
tion Map (CAM) to reveal a visualization of regions that
were most relevant when predicting the given image’s class,
which could assist ophthalmologists in their diagnosis. Our
results show that using a DenseNet CNN outperforms the
baseline model significantly and is particularly strong at
identifying early-stage DR, a significant issue in the medi-
cal world.

2 Introduction

Although relatively unknown, diabetic retinopathy
(DR) is by and large the leading cause of blindness in
adults of the developed world. Affecting over 93 million
people, the disease causes significant vision impairment in
individuals who have diabetes, but can be easily averted
if detected at an early stage [1]. The current diagnostic
process begins with an ophthalmoscopic examination in
which a trained clinician examines digital color fundus pho-

tographs of the retina. Unfortunately, diagnostic results are
only ready days after the image is taken. Additionally, fac-
tors like clinician fatigue and experience and image quality
can heavily contribute to human errors. Our goal is to
use deep learning to provide a solution that can assist eye
specialists in making accurate diagnoses. While previous
attempts have made some strides in the right direction, our
goal was to extend far past that and create something with
potential to be put into practice.

To achieve this, we built a model that classifies mi-
croscope images of the eye into one of 5 classes, each of
which represents a different stage (0-4) of DR. The input to
our algorithm is an image of a retina, oriented as if viewed
through a microscope condensing lens. We then use a
DenseNet CNN with a Softmax output layer to output a
predicted intensity (0-4) of DR. The numeric scale scores
refer to increasing levels of severity: 0 means no DR, 1
means mild DR, 2 means moderate DR, 3 means severe
DR, and 4 means proliferative DR.

3 Related work

The majority of previous attempts to automatically
detect DR utilize medically relevant feature extraction cou-
pled with various classifiers, resulting in satisfactory per-
formance.

3.1 Two-class detection

Gardner et al. employed retinal exudate detection as
well as pixel intensity with a neural network to categorize
DR severity, ultimately achieving 88.4% sensitivity and
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83.5% specificity. However, this network struggled with
low contrast images of the eye, as their model did not
use data augmentation techniques to account for different
image qualities [2]. Sinthanayothin et al. preprocessed im-
ages with contrast enhancements, and used intensity varia-
tion and Recursive Region-Growing Technique (RRGT),
a region-based image segmentation technique, to detect
blood vessels, hard exudates, and other retinal features.
Using a NN with these features, their approach yielded
80.21% for sensitivity and 70.66% for specificity [3].

3.2 Three-class detection

Mookiah et al. extracted 13 features (including tex-
ture, microaneurysms, blood vessels, distance between
various characteristics, and exudates) and used three clas-
sifiers (Probabilistic Neural Networks (PNNs), Decision
Trees, and Support Vector Machines), to detect three stages
of DR. Their PNN classifier obtained an average classifi-
cation accuracy of 96.15% [4]. Nayak et al. had a similar
approach, using fewer features, and obtained an average
accuracy of 93%, specificity of 100%, and sensitivity of
90% [5].

3.3 General Shortcomings

These four papers cited that their models could be
improved with larger data sets and higher quality images
in each class for improved feature extraction. Because they
all share a feature-based approach, performance is sus-
ceptible to image quality, noise, artifacts, and laser scars.
Additionally, obtaining large datasets with the ground-truth
is difficult because a trained clinician is required to label
images.

Furthermore, these studies focused on extracting med-
ically relevant features. While undeniably useful, these
approaches failed to consider unintuitive features that a
CNN could learn. Our work differs because we attempt
five-class classification for a finer-grained categorization
of DR intensity. Additionally, our dataset includes blurry
and over/underexposed images with the intention of devel-
oping a robust model that can handle low-quality images.
Our method is a different take on prior literature, and we
addressed the weaknesses of these models by utilizing a
CNN, which can stand alone without the need for hand-
made medical features.

Finally, these models have low interpretability since
they do not inform users what regions were most impor-
tant to a specific classification. Our approach implements
Class Activation Maps (CAMs), which allow clinicians to
intuitively visualize which areas in the image were most
essential to the diagnosis.

4 Dataset and Features

We used a rich, preprocessed dataset from
Kaggle (https://www.kaggle.com/c/diabetic-retinopathy-
detection/data) in order to perform our multi-class classifi-

cation of the stage (0-4; 5 classes) of diabetic retinopathy
present. This dataset contained 5,000 images, 1,000 of
which we held out for the validation and test sets. Then,
we used image data augmentation techniques to increase
the size and strength of our train set (from 4,000 to 8,000
images). This is because the provided labeled data poten-
tially included noise to accurately imitate real-world data -
some images were blurry, had poor exposure, and varied
in color scheme. So, having such additional data was ger-
mane to ensuring the robustness of our classifier. With data
augmentation, we had 8,000 train examples, 500 validation
examples, and 500 test examples (80/10/10 split).

4.1 Class Imbalance

From a descriptive analysis of our data, we realized
that there was a significant class imbalance problem here:
73% of data belongs to class 0, 7% to class 1, 15% to
class 2, 3% to class 3, and 2% to class 4, as shown in the
histogram below. There were, however, an equal number
of left and right eye images.
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4.2 Resolution Pre-processing

The only pre-processing step that needed to be taken
was modifying the resolution of the images. Excluding
the RGB channel, the given images had resolution 4750
x 3160. However, after quick experimentation with our
baseline model, we noticed that the size of these images
caused learning to be quite slow. So, we shrunk each im-
age’s area to 475 x 316. Finally, since we used a CNN
for our model, there was no need to perform any feature
extraction steps; features were implicitly “created” by our
convolutional layers.

4.3 Image Data Augmentation

We augmented every training data image with
changes in blur, contrast, brightness, and color. To a given
image, Gaussian blur with random o between 1.0 and



2.0 was applied with probability 50%. Next, following
the lead of literature in this field, an increase in contrast
was also applied with probability 50% [6, 7]. Afterwards,
we performed color shifting by multiplying the value of
each color channel by a value between 0.75 to 1.25 with
probability 30%. Finally, images were randomly slightly
brightened or darkened using Keras’s ImageDataGenerator
class.

Rotation and cropping techniques - despite being pop-
ular for image classification - were not applied to the data.
This is because having properly aligned and oriented im-
ages for DR diagnosis is crucial, and our images were all
oriented the same way, as they all came from a microscope.

Figure 1: Original Image
S Methods

We built two CNN’s to perform this classifica-
tion task: (1) a baseline CNN with two convolu-
tional layers, and (2) a DenseNet CNN with 422 lay-
ers. Here is the link to the project’s Github page:
https://github.com/laurenyang/detect-diabet

5.1 Baseline Model

Convolutional Neural Networks (CNNSs) are a class
of deep learning model that uses convolutional filters to
primarily analyze image data. We used Keras to create a
CNN with 2 convolutional layers with 64 filters and ReLU
activation. We then flattened the output of the second con-
volutional layer and fed that into a fully connected (dense)
Softmax output layer with 5 classes.

5.2 DenseNet-121 Model

DenseNet is based off of the finding that CNNs are
more accurate and efficient if they contain shorter connec-
tions between layers. While traditional CNNs only have
connections between adjacent layers, DenseNet splits the
CNN up into Dense Blocks, where every layer within a
dense block is connected to every other layer within that
block. By using the feature maps of all previous layers
as input, DenseNet reduces the number of parameters by
encouraging feature reuse. In addition, by being able to
directly access all feature maps in its block, DenseNet
solves the vanishing gradient problem. Literature shows
that these advantages have allowed it to beat the state-of-
the-art in benchmark object recognition tasks since its deep

Figure 2: Augmented Image

architecture allows it to understand the complex features
central to advanced image classification [8].
Dense Block 1 Dense Block 2 Dense Block 3

Figure 3: DenseNet Sample Architecture [9]
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We used DenseNet-121, which contains 121 dense
blocks, making a total of 121 batch normalization layers,
120 convolutional layers, 121 activation layers, 58 con-
catenation layers, and 1 global average pooling layer. We
fed this last layer into a fully connected (dense) Softmax
output layer with 5 classes. We used Stochastic Gradient
Descent as our optimizer.

5.3 Sparse Categorical Cross-Entropy Loss

Cross-entropy loss is typically used for multi-class
classification tasks. However, since our classes were en-
coded with integers 0-4 as opposed to one-hot encodings,
we used a variation called sparse categorical cross-entropy
loss. This is especially suitable for network with deep ar-
chitecture like DenseNet since cross-entropy only depends
on the output of a neuron rather than the gradient of the
sigmoid function, which mitigates the vanishing gradient
problem between dense blocks.

M
=2 e=1Yo,cl09(Po,c)
Equation 1. Categorical Cross-Entropy Loss

5.4 Modifying the Loss Function

Because of the tremendous class imbalance problem
(class 0 is far more common than the classes 1-4), we de-
cided to modify our loss function so that in training, our
model penalizes misclassifications of certain classes with
a weight proportional to the log-inverse-frequency of that
class. That way, the misclassification a rare class like 3 has
a more significant effect on the weight updates than the
misclassification of a common class like 0. To actually im-
plement this, we set the class-weight argument in Keras’s
model.fit() function to class_weight = {0: 0.133841, 1:

1.15771, 2: 0.822009, 3: 1.60461, 4: 1.6956}.

This is also advantageous in a medical context. For
precautionary reasons, it’s much better to falsely put a pa-
tient on watch than to fail to diagnose someone. Since this
system would be implemented to augment ophthalmolo-
gists’ decision making, it behooves us to focus on what
humans may miss and thereby give more weight to rarer
classes.



6 Experiments/Results/Discussion

6.1 Hyperparameter Tuning

We used a learning rate of 0.01 because initial experi-
mentation showed us that a learning rate of 0.001 was far
too slow in training whereas a learning rate of 0.1 led to
high bias. Experimenting with a standard batch size of
32 revealed that the difference between Bayes error and
training error was significantly lower than the difference
between training error and validation error. Thus, to de-
crease variance, we used a batch size of 64 instead. The
model was trained for 20 epochs. We were careful not to
train longer due to the inherent variance in eye shapes and
colors; however, we didn’t want to train for too less time
given that detecting DR is quite a complex problem.

6.2 Results

Figure 4: Original Image Figure 5: Heatmap of Image

Table 1: Confusion Matrix

Predicted

0 1 2 3 4
True 0 671 2 42 0 0
True 1 5 66 8 0 0
True 2 18 5 119 13 0
True 3 1 4 10 9 4
True 4 1 0 7 4 11

Table 2: Results Table
Sensitivity ~ Specificity =~ Accuracy

Baseline 0.674 0.925 0.702
Class 0 0.938 0912 0.938
Class 1 0.857 0.988 0.835
Class 2 0.64 0.921 0.768
Class 3 0.346 0.983 0.321
Class 4 0.733 0.996 0.478
Overall (micro avg) 0.876 0.969 0.876
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6.3 Discussion

In accordance with relevant medical literature, we
chose to measure sensitivity, specificity, and accuracy.
Sensitivity measures the algorithm’s ability to correctly
identify those with DR while specificity measures the al-
gorithm’s ability to correctly identify those without the
disease. Sensitivity is of particular importance given the
gravity of false negatives in diagnosis. Given the class
imbalance, we use micro-averaged metrics to evaluate our
overall model.

Qualitatively speaking, the results show that our
model had sensitivity and specificity measures of 87.6%
and 96.9%, both higher than the 67.4% and 92.5% of
our baseline. In addition, DenseNet produced a micro-
averaged accuracy of 87.6%, compared to our baseline
model’s accuracy of 70.6%.

The confusion matrix reveals that entries are primarily
situated on the diagonal, indicating a strong true positive
rate. Further analysis reveals that the DenseNet model was
particularly adept at classifying stages 0 (no DR), 1 (mild
DR), and 2 (moderate DR) accurately. Particularly, the
accuracy was above 75% for all three classes, and Class
1 (mild DR) had a sensitivity of 85.7% and a specificity
of 98.8% Since detecting these early stages of DR is most
challenging for ophthalmologists, we know that our model
has tremendous potential to assist doctors with early-stage
detection.

That being said, a relative weakness of our model
was with stages 3 (severe DR) and 4 (proliferative DR).
We believe that this weakness was due to the severe class
imbalance and lack of data for these classes; while we did
take measures to prevent overfitting to the first 2 classes,
we believe even more work in this area would alleviate this
issue. However, manually diagnosing Stages 3 and 4 is not



too difficult for specialists because the visual markers in
the image are often quite apparent when DR is this severe.
Hence, our model overall has great diagnostic prowess if
used in conjunction with an eye specialist’s diagnosis.

On the qualitative side, the graph of our loss function
shows that as expected, the loss is decreasing over time.
Perhaps most valuable feature of our model is our use of
Class Activation Mapping (CAMs). As can be seen in
results, CAMs use a heatmap to visualization the regions
of the eye image the deep learning model is using to make
classification decisions. For instance, the doctor would
then know to take a closer look at the two highlighted
regions. This is most useful as it allows our model to
be interpretable, which is far more valuable in augment-
ing decision-making than slightly increased performance
would be.

To prevent overfitting, a higher batch size was used,
the model was only trained for 20 epochs, and we changed
the model weights to be inversely proportional to the class
imbalance. Even with these countermeasures, we believe
we slightly overfit to the training set given that the differ-
ence between Bayes error and training error was signifi-
cantly lower than the difference between training error and
validation/test error.

7 Conclusion/Future Work

Our goal was to build a robust model capable of tak-
ing a retinal microscope image as input, and outputting
the stage (0-4) of DR present. We built two models: (1)
a baseline CNN with two convolutional layers, and (2) a
DenseNet CNN with 422 layers.

7.1 Summary of Algorithms

Our DenseNet CNN significantly outperformed the
baseline model because it was a deeper, more intricate
model that allowed for more complex visual features to be
learned. Furthermore, DenseNet requires fewer parameters
due to extensive feature reuse and helps mitigate the van-

ishing gradients problem, which likely further contributed
to its success.

Specifically, the DenseNet model was best at classify-
ing early-stage (0-2) images, which are the most difficult
diagnoses for ophthalmologists, so we know that our model
has tremendous clinical potential. While our model’s weak-
ness was late-stage (3-4) images, ophthalmologists often
have little difficulty making these diagnoses, so these mis-
classifications would have very little impact if checked by
an ophthalmologist.

7.2 Future Work: Model

In the future, to refine our model, we could first try
running our model on more data; no amount of model
refinement will ever be a replacement for gathering more
data. We have access to 44,000 more images, but computa-
tional resources limited our ability to use them, so using
them in the future could yield a superior model. Further-
more, we could try freezing less layers on our pretrained
model so that the trained weights are more specialized to
our eye images.

7.3 Future Work: Computer-Aided Diagnosis

Beyond the model, we have actively been connect-
ing with eye doctors to gather research on how our tool
and CAM visualization could help improve DR screening.
Per our conversations with specialists, they often have dif-
ficulty detecting DR at its early stages, and regular eye
doctors are not even trained to diagnosis DR, so they ex-
pressed that a tool like ours would be immensely helpful
for strengthening their diagnoses. In fact, one doctor indi-
cated that they could not share much because high-profile
companies had reached out to them about using such prod-
ucts and it would be conflict of interest, so we know that
this is an important space. Ultimately, we are optimistic
and confident that focusing on model interpretability (for
example, by expounding upon our CAMs approach) will
prove most useful in the real-world by facilitating eye doc-
tors’ diagnostic processes.



8 Contributions

The three of us worked on defining the problem to solve from the beginning. Pranav worked on getting the baseline
model to work and did research into which architectures could be best for our final model (which ended up being
DenseNet). Sushil worked on implementing the DenseNet model. Lauren worked on implementing the CAMs in
order to achieve better interpretability of results. Pranav and Sushil worked on extracting and analyzing our evaluation
metrics. We each focused on writing different sections of the paper (Lauren: Abstract, Introduction, Related Work;
Pranav: Dataset and Features, Conclusion and Future Work; Sushil: Methods, Results), and afterwards, all three of
us independently proofread the paper and made changes accordingly. We all worked together on putting together the
images/diagrams/figures for the paper. Lauren worked on compiling our write-up into LaTeX, and Pranav and Sushil
worked on transforming our write-up into the final poster.
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