Captcha Recognition using CNN

Yichen Wang
Stanford University
yicwang(@stanford.edu

Abstract

An automated captcha image recognition application trained with deep learning convolution
neural network.

Introduction
Captcha is invented for ages, mainly for improving the security of the applications. It is delivered
in the format of image (most common) or audio, which only humans are supposed to understand
and provide the correct response. For example, distortion and rotation of characters, adding
background noises, etc. are giving almost zero challenge to humans, but will confuse traditional
OCR or computer vision algorithm to recognize them correctly. With the power of deep
learnings, above technics can be easily cracked. The model will give very high accuracy when
predicting the captchas, and the application implemented this model can be used as a demo for
demonstrating the weakness of traditional captcha technologies.

Dataset and Features
There are tons of formats and styles of captcha images, but at the end of the day, they are all
generated from “programmable” ways. 1.e. even they look very differently from ones to ones, the
differences for generating those images are maybe just couple of parameters. From a result of
background researches, there are different libraries are used by different applications in Python,
Java, Javascript etc. For demonstration purposes, lepture/captcha
(https://github.com/lepture/captcha) will be the library used in this project.

Below are a few captcha examples that used in some companies:

Page 1

Security Features

Scheme Website(s) Examy y 7 p——— — Anti-recogaition Excluded Characters
e e . : Overlapping characters, . X X X
weanhicks Rotation, distorti =
Wikipedia wikipedia.org eanh Enligh letters otation, on, waving
Different font styl
Microsoft {live, bing, miscosoft}.com 7\ Overlapping characters, valri::'le?onlo:iz:;y i 615
{office, linkedin}.com & ™~ solid background § T D,GLQU
rotation, waving
Overlapping characters, Character rotating,
Ba bay. 424, _
= e h— 3 @5 Only arabic numerals distortion and waving
i i —e) @\Z) Occluding lines, overlapping, Varied font size, color,
Eist Kbulde,) vom Ce D only Enligh letters rotation, disortion and waving =
google.{com,co.1in,co.jp,
e co.uk, l‘l.l ,com.br,fr \“ﬁ’k\ebg Ovt‘:l'hpp'mg characters, Varie.d fon.t size.s & colo‘r, B
& com.hk,it,ca,es,com.mx} Enligh letters rotation, disortion, waving
youtube. com
{alipay, tmall}.com English letters and 01
Alipay {taobao, login.tmall}.com YM arabic numerals, Rotation and distortion I 1—, 0
alipayexpress.com overlapping characters !
English letters and
D jd.com WS arabic numerals, Rotation and distortion D.G.LJ Lo,(;’lf’ L 92
overlapping characters -G.LJLLOFRQ
i English letters and Varied font sizes 0,
Qihu360 360.cn P arabic numerals, 0 e LLOT,
| EEfam ' rotation and distortion .
overlapping characters i,Lotgq
~ o English letters and 1,90,
Sina sina.cn ‘\\J/r ! ‘\\ arabic numerals, Rotation, distortion, waving DLLLOT
overlapping characters iLjlotgr
English letters and
< . arabic numerals, . . " 0,15
Weibo weibo.cn //ﬂ [| R S B Rotation and distortion D,G,LQU
occluding lines
“y Complex background, : 2
Sohu sohu. com \ g?(ﬁ occluding lines, aced fo.nt Sh= Colox X Lt
- : and rotation 1laz
and overlapping

Table 1: Text-b

d captcha sch

tested in our experiments.

As we are using the same library for both developing and testing, so the distribution among
trainset/devset/testset are all same. Moreover, given they are all from the same source, only two

datasets division 1s needed: trainset/testset.

The character sets allowed 1s small alphabets, big alphabets, and digits, counts in total of 62. The
output will be total character sets allowed times the length if represented in one-hot format. The
representation of the training data X are [?, 60, 160, 3], which representing [samples, height,
width, channels]. The representation of training data Y is using a one-hot representation, [?, 62 *
max_length]. The most common length 4 will be used in this project.

There are a lot of hyperparameters can be tuned, and different values are explored:

Methods & Discussions

A typical convolutional neural network architecture is used for this model.

1. Number of Convolution Layers
Tried with 2 and 3 convolution layers, they are giving about the same performance while
3 convolution layers approach just take more time to train. Hence, it turns out for this
type of task, 2 convolution layers are sufficient;
2. Number of Fully Connected Layers

Page 2

Tried with 1 and 2 FC layers, 2 FC layers converged faster, but with enough epochs, the
performance also turns out to be the same;

Kernel sizes used in Conv2D

When increasing kernel sizes from 3*3 to 5*5, the training time for every epoch almost
tripled, while gives about the same performance.

Learning Rate

Tried with 0.009 and 0.001, seems 0.001 will be a more reasonable approach.

There are other parameters that are also being played, but those are not really affecting the final
results like:

1.

Minibatch size

2. Epochs (when greater than 100)
3. Training set sizes (when greater than 4096)

Besides above parameters, below are also being noticed as important things in the application:

1.

RGB Image VS Grey Image

The application i1s developed from dealing with RGB images, hence all datasets and
convolutional weights/kernels are prepared to be compatible with 3 channels. However,
inspired by ref[2], it is not necessary to deal with 3 channels most of the time. When
image 1s being greyed, the key information will not be lost, but the whole training 1s
expected to consume much less resources and converge much faster.

File 10

The draft version of the application was written to generate entire trainset/devset up in
front, and we read every image from filesystems and digitized it to numpy arrays during
training when needed. From that revision of the code, the training speed was really slow.
Spent quite some time debugging on it, it turns out the file I/O were wasting a lot of time.

The fix is to trade memory to time. Since there is a programmable API for generating the
data, instead of writing to and reading from file, all images in the format of numpy array
will be stored in memory up in front. This will bypass the heavy file 10 operation, and
speeds up the training significantly.

Results

Train Accuracy: 100%
Test Accuracy: 99%

Conclusion/Future Work

So, with the power of deep learning, the accuracy of cracking captcha generated by
lepture/captcha is pretty high. It is also strongly suggesting that the same performance will be
seen with captchas generated from other libraries as well.

During the implementation of this application, a lot of API changes are being seen in the
TensorFlow community. Quite some APIs mentioned in the deep learning courses and
assignments are outdated and marked for deprecation. Some are easy to figure out, while some

Page 3

are going to be non back-compatible changes. Given that the newer version of TensorFlow is
integrating Keras, defining a model using Keras style will be needed to be adapted to when
moving forward.

More steps ahead, with a known model working, it is nicer to have a Rest API server running, so
application will have better interface to be utilized.

Code

https://github.com/yicwang/captcha_recog

References

[1] https://github.com/lepture/captcha
[2] https://www.zdnet.com/article/new-machine-learning-algorithm-breaks-text-captchas-easier-
than-ever/

Page 4

