Spoof Detection with RGB Cameras in Facial Recognition Systems

Ye Li, Kairen Ye, Jiyao Yuan
{liye5, kairenye, yuan999}@stanford.edu

Abstract—As face has gained much attention as a promising
mode of identity, a robust face anti-spoof algorithm is essential
to massively deploying facial recognition as the primary mode
of authentication. Instead of relying on more expensive depth
sensors, we propose to implement a deep-learning based solution
to detect spoof images with regular RGB cameras. Our model
will learn from two auxiliary supervisions (pseudo-depth maps
and rPPG signals) to discern live vs spoof images. We show that
our CNN-RNN architecture can achieve a recall rate close to
100% for spoof faces, which meets the rigorous requirements by
biometric authentication systems.

I. INTRODUCTION

With the increasing application of biometric authentication,
face has gained much attention as a promising mode of iden-
tity. Consequently, a robust anti-spoof algorithm can tremen-
dously boost users and stakeholders confidence in massively
deploying facial recognition as the primary mode of authenti-
cation. In previous traditional anti-spoofing algorithms, binary
supervision is commonly used to train deep neural network
(DNN), but it lacks explainability and has poor generalization
[1]. Therefore, a novel DNN with auxiliary supervisions is
proposed. In this novel method, the model would estimate
pseudo-depth maps without the need for depth input from
the camera and also estimate remote photoplethysmography
(rPPG) signal, which encodes heart rate information, for
discerning live versus spoof images. With this innovative and
robust approach, facial authentication using ubiquitous 2D
RGB cameras can be deployed with confidence.

II. RELATED WORK

In previously published work on face anti-spoof, researchers
use similar input image formats but instead adopt binary
supervision (i.e. 0 for spoof and 1 for live) with softmax
loss to train CNN models [7, 8]. However, the pitfall of
these approaches is that training such networks result in poor
generalization, because binary supervision doesn’t enforce the
network to learn image degradation characteristics that might
indicate faithful spoof patterns [1]. Rather, these networks
might learn arbitrary cues such as screen bezels [1]. Moreover,
these approaches do not provide explainable outputs.

In our work, we refer to [1] and introduce a novel DNN
that is trained on 2D pseudo-depth maps and rPPG signals.
Then, classification of spoof versus live is performed by
thresholding the sum of the norms of the outputs. As opposed
to a completely end-to-end approach with binary supervision,
this novel DNN achieves better generalization and more stable
results.

III. DATASET AND FEATURES

The dataset contains 165 subjects [1]. Each subject has
approximately 8 live video clips and approximately 20 spoof
video clips. All videos are about 15 seconds in length with
HD 1080P resolution recorded at 30 FPS. Live videos are
taken with variations of illumination, distance, pose, and facial
expression. Spoof videos are taken with different attacks,
such as paper with various textures and tablet devices of
different brands. In total, the dataset contains 4,478 video files,
occupying approximately 211 GB on disk. Fig. 1 illustrates all
the possible combinations in the dataset as well as the naming
convention of the video files. By inspecting the dataset, we
were able to infer the exact train-test split used in the original
paper [1]. We would use the same train-test split, where the
training set contains 90 subjects, and the test set contains the
rest 75 subjects.

[1 [Canon EOS T6

SensorlD ——— Logitech C920 webcam
MediumID SessionID
1 2 3 4 1 2
s s o g Move Yaw-angle
1 | Live | Nolighting | ExtraLighting backward | rotation & facial
‘variation variation .
and forward | expression change
Print High resolution | Low resolution Gloss
2 Attack image image Pa ery Matt Paper
TypelD (5184 x 3456) | (1920 x 1080) P
. = Samsung
Print iPad Pro 2 Asus T
3 AtEEE (2017) iPhone 7 Plus MB168B Ga;gxy Randomly select a live video

Fig. 1: All the possible combinations in the dataset [1]. The
naming convention of the video files follows the Subjec-
tID_SensorID_TypelD_MediumID_SessionID.mov format.

IV. METHODS

Since the reference paper [1] does not release its open-
source implementation, we proposed to implement similar
approaches and models from scratch in PyTorch and then
compared our results to the original paper. We devoted sig-
nificant efforts to label our data and generate the auxiliary
supervisions to be used in training, which are the pseudo-depth
maps acquired from 3D face alignment and the rPPG signals
encoding heart rate information. We then created a custom
non-rigid registration layer that performs face frontalization for
more consistent model learning. Finally, we built the network
with a CNN-RNN architecture that learns from both spatial
and temporal cues.

A. CNN-RNN Architecture

Our DNN architecture is illustrated in Fig. 2. The network
utilizes both convolutional and recurrent layers, and we use
an end-to-end scheme to train the network with the two loss

256x256%6x5 ! L - . L T ! t T
|
(RGB+HSV)

Hidden
Neurons

Non-rigid
Registration

32x32 Loss

Fig. 2: The overall network architecture of the anti-spoof model. The network contains both convolutional and recurrent layers
and has two loss functions (one for depth map and the other for rPPG signal) [1].

functions [1]. The convolutional layers help the network cap-
ture cues for generating the pseudo-depth from a single frame
of image, whereas the recurrent components help the network
capture the temporal information necessary for learning the
rPPG signal across multiple image frames over time. The
Depth Map Loss is defined as

Ng
©p = argmin Y _[|CNNp(I;0p) — D3, (1)
D =1

where ©p is the CNN parameters, Ny is the number of
training images, I; € R2°6%256 i the i'" input frame, and
D; € R32%32 is the ground truth depth map for the i*”* training
image [1]. The rPPG Loss is defined as

N
. N

Or = ar%mlnZ”RNNR([{FJ'}j:fl]i; er) —filf, @

B =1
where Op is the RNN parameters, F; € R32*32 is the
frontalized feature map, N, is the number of sequences, and
f; € R is the ground truth rPPG signal for the i* training

image [1].

B. Non-rigid registration layer

A non-rigid registration layer exists between the convolu-
tional and the recurrent portions of the network. As shown in
Fig. 3, the layer takes the feature map T, the depth map D,
and the 3D shape S as inputs and outputs F to the recurrent
part of the network. Additionally, we have a predefined 3D
shape Sy, which is a frontal 3D face shape. For T, D, U, V,
and F, the dimension is R32%32. For S and Sy, the dimension
is R3x53215

First, we threshold D to generate a binary mask V. Then, we
take the element-wise product between the binary mask V and
T and denote the result as U. Then, two mapping functions,
f1 and f5, are used to frontalize U to F. Function f; maps an
index of column vectors of S to index (i.,js) of U. Function
f2 maps index (i, 7) of F to an index of column vectors of Sg.
Mathematically, each element of F is computed as follows:

ix, Jx = f1(f2(3,))- “4)

To demonstrate our implementation of the face frontaliza-
tion step in the non-rigid registration layer, we take a 2D depth
map as U and frontalize it to F, as seen in Fig. 3 where the
bottom left image is the input 2D depth map and the bottom
right image is the frontalized depth map.

The non-rigid registration layer has three main advantages
[1]:

« the input data are aligned (i.e. frontalized) and the RNN
can compare the feature maps without adjusting for
variations in pose;

« backgrounds are removed;

« the binary mask weakens the feature map activations of
spoof faces.

3D Face S S 0

e Alignment I

Fig. 3: Non-rigid registration illustration (top) and an example
of our implementation (bottom).

C. Generating Supervision Data

1) Face detection and cropping: In the SiW dataset, each
video has an associated .face file, which includes the coor-
dinates of face bounding boxes in every frame. If no faces
are detected in a frame, the coordinates will be zero. When
processing and preparing our training data, we extract the

5 10 15 20 25 30

Fig. 4: From left to right, each picture shows 1) the original face image cropped by given coordinates, 2) fitting the sparse
68 landmarks onto the face image, 3) fitting the dense 53,215 vertices onto the face image using DeFA, 4) the R32*3? depth

map by applying Z-Buffer to the 53,215 vertices.

first 60 frames with valid face coordinates, crop each frame
according to the face bounding box coordinates, and output
the cropped frames as the data we use during training for that
video ID. Because some frames might not have a detected face
and hence might not have valid bounding box coordinates,
the 60 frames we extracted might not be strictly consecutive
in 30 fps, which could slightly distort our generated rPPG
supervision. However, such variation does not significantly
impact training integrity, since slight randomness could help
prevent overfitting.

2) Estimating 3D Face Shape with Dense Face Alignment
(DeFA): One of the two auxiliary supervisions used in training
our network is the pseudo-depth map. To estimate the depth
map for a 2D face image, the dense face alignment (DeFA)
approach is used [3]. First of all, the frontal dense 3D shape
Sr € R3*%3215 (je. the dense 3D face shape is estimated with
53,215 vertices) is represented as a linear combination of the
identity bases and expression bases

N;q) Neap)
SF = SO + Z azdszd + Z aérzzpsézp7 (5)
=1 i=1

where a;q € R' and a.,p, € R? are the identity and
expression parameters [3]. We use the Basel 3D face model
[4] and the facewarehouse [5] as the identity and expression
bases. Then, with the estimated pose parameters P = (s, R, t),
where R is a 3D rotation matrix, t is a 3D translation, and s
is a scaling factor, the 3D shape S is aligned to the 2D face
image via

S =sRSp + t. (6)

The rotation matrix and the shape parameters (i.e. o;q and
Oezp) for aligning to a specific 2D face image are acquired
from the output of running a forward pass of the pretrained
DeFA convolutional network, obtained from the author’s open-
source DeFA implementation [3]. In Fig. 4, the result of
running DeFA on a cropped face image is shown, where the
third picture from the left shows the result of projecting the
53,215 vertices onto the original 2D face image.

3) 2D Depth Map Generation with Z-Buffer: As seen
above in Section C.(2), DeFA outputs S € R3*?3215 which
corresponds to the dense 53,215 3D vertices fitting a persons
face image. However, we still need to transform these dense

points into a depth map D € R32*32, which is one of the
two supervisions needed in training [1]. To do so, we first
normalize the z values of the 3D vertices from DeFA to be
within [0,1]. Then, we apply the Z-Buffer algorithm to project
these 3D vertices onto a R32*32 down-sampled depth map. In
the Z-Buffer algorithm, for each point on the R32*32 depth
map, we look at all 64 corresponding vertices in the original
R?%6 image dimension and select the largest z value to be put
on the 32x32 depth map.

4) rPPG Signal Generation from Consecutive Video
Frames: tPPG is the technique of measuring heart rates
without any physical contact with human skin and has gained
attention as a potential indicator of spoofing. rPPG signal
is related to the intensity changes of facial skin over time,
which are highly correlated with blood flow [1]. In the labeling
process, we first track a region on the forehead to be used later
for computing the rPPG signal [1]. Then, we use chrominance-
based rPPG, which computes color difference to eliminate the
specular reflection and estimate two orthogonal chrominance
signals [1]. We apply a band-pass filter to the chrominance
signals and apply the Fast Fourier Transform (FFT) to get the
final rPPG signal. Mathematically, for the tracked region on
the subjects forehead, we compute

Xf=3l‘f—2gf, (7)
y; = 1.5r; +g; — 1.5by, (®)

where ry , g, , and by € R'% has each individual value in
the vector computed from the average of the respective color
channel at a single video frame [6]. The three vectors are then
normalized and band-pass filtered to 0.6-4Hz (36-240 bpm).
Finally, the ratio of the standard deviations of the chrominance
signals

o(xy) ©)
oy f)

"Y =
is used to calculate signal p

i i 3y
p=3(1— §)I'f—2(1+§)gf+?bf. (10)
Finally, the ground truth rPPG signal f € R is obtained
by applying FFT to p [1]. Note that during training, for each
subject’s live data, only one ground truth rPPG signal is used,
because we assume that the videos of the same subject under

different pose, illumination, and expression (PIE) variations
have the same ground truth rPPG signal, which is valid since
the data for the same subject were collected in a short span of
time (< 5 minutes) [1]. In Fig. 5, we show an example of an
rPPG signal we have computed on a 5-second video footage.
With the video recorded at 20 FPS, we used 100 frames (i.e.
5 seconds of footage). We consistently tracked a region on
the subject’s forehead and applied the steps outlined above to
acquire the final signal. Note that the peak of the example is
at 0.8 Hz, which is quite reasonable since this corresponds to
a heart rate of 0.860=48 bpm.

normalized fft signal f

Fig. 5: An example of rPPG signal.

V. EXPERIMENTS
A. Baseline model with SVM

Due to its easy implementation and relatively short training
time, SVM is chosen as our baseline model to classify the
input RGB face images into live versus spoof.

Unlike our CNN-RNN approach, SVM model is trained
with binary supervision as it cannot be designed to estimate
2D depth map and rPPG signal. Each input image is a video
frame in the SiW dataset. Specifically, a total of 3,112 images
exist in the dataset used in the baseline SVM model, where
1,616 are live images and 1,496 are spoof images. Data are
then split into 80% for training and 20% for validation.

We first detect and crop the face image in each sample. Each
face image is then resized into a 32 x 32 RGB image, with
INTER_AREA as the interpolation type. We then normalize
and flatten samples into a R3°72 vector. Note that when the
length of vector is larger, the variance would be larger, because
more features are taken into account. On the other hand, when
the length of vector is smaller, the bias would be larger,
because more information would be lost during the process
of flattening an image into a vector. In our experiment, an
R3972 vector results in acceptable variance, bias, and running
time. Finally, the vector is fed into an SVM (C = 0.1) with
degree-two polynomial kernel.

B. Training the CNN-RNN model

We trained our CNN-RNN model in an end-to-end manner
by adding the two loss functions (1) and (2) into an overall
loss, from which the model backpropagates. During backprop-
agation, all the layers’ parameters get updated due to the use
of the overall loss. Since the two losses differ by at least

four orders of magnitude, we put a hyperparameter p, which
serves as a weight on the depth map loss in the overall loss
calculation, for better training results.

We concatenated HSV channels to each RGB image frame
as input. We used a sequence length of 5 for the LSTM layers.
Hence, the input dimension for CNN is at least 5 X 6 x 256 x
256 (batch x channel x H x W). After forward propagating
through the CNN layers and the non-rigid registration layer,
the feature map output will be reshaped to 1x5x1024 (batch x
sequence xinput_length) since every five consecutive images
will generate one rPPG signal.

Finally, we used a mini-batch size of 10 for CNN (input
dimension is 10 x 6 x 256 x 256), and a mini-batch size of 2
for RNN (input dimension is 2 x 5 x 1024). The train-test split
is approximately 60%-40%. We used a random yet balanced
subset of the full training data due to time and resource
constraints and trained for 10 epochs, where each epoch is
4440 steps. See Fig. 7 for our training losses.

C. Classification score at test time

At test time, after generating the output depth maps and
rPPG signals, we computed a score on each test sample using
the formula

score = |f]|3 + XD % (11)
where D is the network’s output depth map of the last frame
and f is the network’s output rPPG signal. The weight A is set
to be 0.015 [1]. The threshold on the score for classifying live
vs. spoof is 6.3. Using the aforementioned A and threshold,
we calculated accuracy, precision, and recall. In the context
of detecting spoof faces in facial authentication systems, the
objective is to get approximately 100% recall for spoof faces,
while still achieving relatively high accuracy and precision.

accuracy/precision/recall

threshold

Fig. 6: Effects on tuning threshold value on validation accu-
racy/precision/recall.

D. Hyperparameter tuning

For the majority of our hyperparameter choices, such as
mini-batch size and number of epochs, we deferred to [1].
However, we tuned the loss weight ;o and the evaluation
threshold, which are discussed below.

1.2e+6

1.1e+6

9e+5

8e+b

=

20k 30k 40k 0

B8k 10k 15k 20k 25k 30k 35k 40k 45k 0 10k 20k 30k A0K

Fig. 7: From left to right (with TensorBoard smoothing factor 0.99): 1) depth map loss, 2) rPPG loss, 3) overall loss.

1) Weight when combining the two losses: As mentioned
above, since our two losses differ by many orders of mag-
nitude, we proposed to include a hyperparameter p when
calculating the total loss. We tried setting ;1 = m at first
since that is approximately the order-of-magnitude difference
between the dimensions of the two losses. However, the total
loss did not converge faster. For training effectiveness, we
finally set p = 1.

2) Classification threshold at test time: After calculating
the score of each test sample, we tuned the threshold value for
classification and observed how validation accuracy, precision,
and recall changed with the threshold. According to Fig. 8§,
we observe a tradeoff between recall and precision, while
the accuracy first increases and then decreases. Although we
achieved the highest accuracy 95.96% when the threshold is
set around 5.1, in the interest of robustly detecting spoof
faces in facial authentication systems, a recall close to 100%
is desired. Therefore, we used a threshold of 6.3 in our
evaluation.

VI. RESULTS & DISCUSSION

Example depth map and rPPG outputs from our trained
network when given a real and a spoof image are shown in Fig.
8. The output depth map and rPPG signal of a live face image
have significant nonzero values, resulting in a high score as
defined by Eq. (11). On the contrary, those of a spoof face
image have values mostly close to zero, resulting in a score
close to 0.

Table 1 shows the validation accuracy, precision, and recall
for the baseline SVM model versus our trained CNN-RNN
model. Note that these metrics are computed by considering
spoof prediction as positive results. Recall that the moti-
vation behind our work is to create a robust and reliable
face antispoof system so that facial authentication systems
can be deployed with confidence. With this objective, high
recall (i.e. the proportion of actual spoof faces that were
identified correctly) is of the utmost importance. Although
our model achieves relatively similar accuracy and precision
as the baseline SVM model, the trained CNN-RNN model’s
recall is significantly higher (99.52%). In fact, we were able
to achieve 100% recall on the test set if we set the classifi-
cation score threshold higher. Therefore, this model, which is
trained to output auxiliary information instead of mere binary

outputs, also carries the significant benefit of flexibility during
deployment. For example, if the application is less stringent
on detecting spoof faces but values detection accuracy, the
threshold could be adjusted accordingly at test time without
having to re-train the model.

Validation Validation Validation

Accuracy Precision Recall
SVM 91.80% 95.93% 86.62%
CNN-RNN 92.15% 90.37% 99.52%

TABLE I: Evaluation and Comparison

Fig. 8: Examples of output depth maps and rPPG signals from
the network for live (top) and spoof (bottom) images.

VII. CONCLUSION & FUTURE WORK

Our trained CNN-RNN model with auxiliary supervision
performs well with a high recall rate. This aligns with the rig-
orous antispoof requirements by facial authentication systems.

In the future, we aim to optimize our process and model
in a number of ways. We would pipeline the data-loading in
our training program so that each mini-batch would take less
time. We would instead train on all 2409 video samples should
time permit. Finally, we would evaluate our model on diverse
test sets to more realistically evaluate the performance of our
model.

CONTRIBUTIONS AND ACKNOWLEDGEMENT

This project is completed with the conscientious and co-
operative effort of three group members Ye Li, Kairen Ye,
and Jiyao Yuan evenly in terms of idea generation, model
establishment, code deployment as well as report writing. We
would like to thank Abhijeet Shenoi, Kian Katanforoosh, and
Yaojie Liu for providing valuable feedback.

REPOSITORY LINK
https://github.com/kairenye/cs230_antispoof

(access granted to cs230-stanford)

REFERENCES

[1] Y. Liu, A. Jourabloo, and X. Liu, Learning deep models
for face anti-spoofing: Binary or auxiliary supervision, in
CVPR, 2018.

[2] D. E. King. Dlib-ml: A machine learning toolkit.
JMLR, 10(Jul):17551758, 2009.

[3] Y. Liu, A. Jourabloo, W. Ren, and X. Liu. Dense
face alignment. In ICCVW, pages 16191628, 2017.

[4] P. Paysan, R. Knothe, B. Amberg, S. Romdhani,
and T. Vetter. A 3D face model for pose and illumination
invariant face recognition. In AVSS, pages 296301, 2009.

[5] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou.
Facewarehouse: A 3D facial expression database for visual
computing. IEEE Trans. Vis. Comput. Graphics, 20(3):413425,
2014.

[6] G. de Haan and V. Jeanne. Robust pulse rate
from chrominance-based rPPG. IEEE Trans. Biomedical
Engineering, 60(10):28782886, 2013.

[7] L. Feng, L.-M. Po, Y. Li, X. Xu, F. Yuan, T. C.-H.
Cheung, and K.-W. Cheung. Integration of image quality
and motion cues for face anti-spoofing: A neural network
approach. J. Visual Communication and Image Representation,
38:451 460, 2016.

[8] L. Li, X. Feng, Z. Boulkenafet, Z. Xia, M. Li, and
A. Ha- did. An original face anti-spoofing approach using
partial convolutional neural network. In IPTA, 2016.

