Determining Style of Paintings using Deep Learning and

Convolutional Neural Networks

Sean Chang

schangl8@stanford.edu

Jeffrey Chen

jchen623@stanford.edu

Patrick Mogan

pjmogan@stanford.edu

March 19, 2019

Fig. 1) The Starry Night by Vincent van Gogh [1]

1 Motivation

The study of artwork has figured prominently in the
deep learning community, with applications ranging
from neural style transfer to digital restoration of
damaged paintings. Equally fascinating is analyzing
its subjectivity. For example, different art historians
have classified Vincent van Gogh’s 1889 masterpiece
The Starry Night (Figure 1) as either an Expression-
ist or Post-Impressionist work, illustrating that in-
terpretation of artwork and determination of artistic
style are topics of debate even among experts in the
field. We seek to explore the degree to which comput-
ers can learn the subjectivity of these classifications.
The input to our algorithm is an image of a painting,
which is then passed into different CNN models such
as a shallow CNN and ResNet-50s. The output is a
predicted style classification.

2 Related Works

We took inspiration from a similar task outlined
in Using CNN to Classify and Understand Artists
from the Rijksmuseum, by Tara Balakrishan, Sarah
Rosston, and Emily Tang [2]. In this study, the afore-
mentioned authors sought to predict the creator of a
painting from the image of that painting, and gen-
erated class activation maps for prediction analysis.
We thought that predicting a subjective rather than
objective label would be an interesting challenge that
could provide insights into the subtleties of painting
styles.

In addition, we were inspired to use a ResNet-50
by a paper written by Adrian Lecoutre, Benjamin
Negrevergne, and Florian Yger titled Recognizing Art
Style Automatically in painting with deep learning [3].
We also used this paper as a reference to compare
model results.

3 Dataset

We used the Kaggle dataset “Painters By Numbers”,
which consists of roughly 103,000 unique images of
paintings primarily from WikiArt.org, and their cor-
responding titles, styles, genres, artists, and dates
[4]. Specifically, there are 125 styles accounted for
throughout the entire dataset. The dimensions of
images in the original dataset varied, thus we re-
sized them to 256 x 256 x 3 pixels. With our pre-
processed dataset, we partition the dataset into an
80/10/10 train, dev, and test splits based on recom-

mended splits for datasets of similar sizes. Through-
out model evaluation, we encountered bias towards
particular styles of paintings due to high prevalence
of these styles over others. As a result, we decreased
the number of styles we classified to the 10 most rep-
resented styles in the dataset. Lastly, we performed
data augmentation on underrepresented styles in or-
der to increase the amount of training data and re-
duce potential overfitting.

Fig. 2) Boulevard Montmartre: Afternoon, Sunshine
by Camille Pissarro [5]

4 Methods

4.1 Baseline Model

For our baseline, we began with looking at simple
CNN architectures as CNNs are often applied to vi-
sual applications of deep learning. We began with
a shallow three-layer CNN in Tensorflow, which was
originally written for binary classification, and mod-
ified it to classify art styles [6]. We chose this archi-
tecture to quickly test a basic CNN and get familiar
with processing our input data and interpreting the
results of a CNN. The baseline CNN consists of the
architecture represented in the table below (Figure
3).

256 x 256 x 3 Input
256 x 256 x 16 CONV 5 x 5
128 x 128 x 16 POOL 5 x 5
128 x 128 x 32 CONV 4 x 4
64 x 64 x 32 POOL 4 x 4
64 x 64 x 64 CONV 3 x 3
32 x 32 x 64 POOL 3 x 3
104,448 x 1 Flattening
1024 x 1 Fully Connected
125 x 1 Fully Connected
125 x 1 Softmax

Fig. 3) Architecture for three-layer baseline CNN [6]

The general approach of this CNN was to reduce
the image scale by a factor of two for each layer, and
ideally extract the most important features as the
model progressed. For the loss function, we used the
cross-entropy loss function for multiclass classifica-
tion to predict style:

L=—- ch\/il yo,clo.g(po,c)

Due to its shallow nature, we expect that low-level
features were not recognized by the model as well as
we would have liked, inspiring our decision to move
forward with much stronger architectures.

4.2 Advanced Models

We next decided to move forward with a stronger
architecture. In addition to increasing the number
of layers, we decided to use a residual network, an
architecture known for its success with image recog-
nition using CNNs [7]. We picked the ResNet-50 over
the ResNet-18 because at worst the ResNet-50 would
train slower and provide a model with an effectiveness
equal to or greater than that of the ResNet-18. Our
model was created using PyTorch libraries, most im-
portantly torchvision. For the loss function, we again
used the cross-entropy loss function due to the na-
ture of our multi-class classification task, and used
an adaptive moment estimation (Adam) optimizer
largely because it has shown to perform effectively
on visual tasks employing CNNs [8]. The architec-
ture is laid out in the table below.

7 X 7, 64, stride 2
3 x 3 max pool, stride 2
1x1,64
3 x 3,64
1 x 1,256
1x1,128
3x 3,128
1x 1,512
1x 1,256
3 x 3,256
1x1,1024
1x1,512
3 x 3,512
1 x1,2048
Average pool
1000-dimensional FC
Softmax

Fig. 4) Architecture for ResNet-50 [7]

3 X

4 x

3 X

The ResNet-50 model we used was pre-trained on
ImageNet. As our application of classifying style of
painting was similar to classifying ImageNet images,
we first tested transfer learning on the ResNet-50,
freezing all layers of the ResNet-50 model except the
last fully connected layer, and then retrained on our
training data. We continued testing this approach
with additional data augmentation in order to bet-
ter understand how manipulating our training data
would impact the performance of our model.

In addition to transfer learning, we were interested
in testing other hyperparameters applicable to the
ResNet-50. As classifying style may require slightly
different feature detection that image classification,
we began to test different numbers of unfrozen resid-
ual layers in the ResNet-50, therefore allowing the
model to retrain additional pre-trained layers. We
experimented with unfreezing the last, last two, and
last three residual blocks. We also added dropout to
the fully connected layer at the end of the ResNet-50.
The latter was a reaction to our model’s tendency to
overfit on our training data. Below are the train and
validation accuracies for each model over 50 epochs,
which guided our decision of which model to proceed
with.

correct predictions
total predictions

Accuracy =

Training Accuracy

0 10 20 30 40 50
Epoch Number

—— ResNet-50 Transfer Learning

—— ResNet-50 Data Aug Transfer Learning

—— ResNet-50: 1 Residual Block Retrained

—— ResNet-50: 2 Residual Block Retrained

—— ResNet-50: 2 Residual Blocks Retrained and Dropout

—— ResNet-50: 3 Residual Blocks Retrained

Validation Accuracy

055

Epoch Number
— ResNet-50 Transfer Learning

—— ResNet-50 Data Aug Transfer Learning

—— ResNet-50: 1 Residual Block Retrained

—— ResNet-50: 2 Residual Block Retrained

—— ResNet-50: 2 Residual Blocks Retrained and Dropout
—— ResNet-50: 3 Residual Blocks Retrained

Fig. 5) Accuracy for train and validation sets for
each ResNet-50 model tested

The code for training and evaluating our modified
ResNet-50 model can be found at our GitHub repos-
itory listed at [9)].

5 Results and Analysis

We chose to analyze precision, recall, and F1 score as
metrics for our results. These metrics are standard
amongst deep learning applications, and give us in-
sight into where the model is potentially failing. Our
results for all the models we tested are presented be-
low (Figure 6).

Baseline*

Resnet-50: Transfer Learning*

Resnet-50: Transfer Learning

Resnet-50: 1 Residual Block Retrained

Resnet-50: 2 Residual Block Retrained

Resnet-50: 3 Residual Block Retrained

Resnet-50: 2 Residual Blocks Retrained and
_ Dropout

0.075
0.475
0.516
0.592
0.587
0.608

0.595

0.024
0.472
0.514
0.588
0.581
0.592

0.59

0.023
0.466
0.509
0.587
0.582
0.593

0.587

*Tested prior to data augmentation
Fig. 6) Validation results

Based on our results from Figure 6, we can obvi-
ously see that the baseline model is not performing
well, and that a 3-layer CNN is not nearly strong
enough for our application. This first iteration sig-
naled to us that we should consider using the more
complex architectures described above.

We see that our model improves once we apply
data augmentation (Figure 6). Without data aug-
mentation we observed that our model performed
more poorly on images that belong to categories like
Roccoco, Art Nouveau, and Symbolism because these
styles were underrepresented in our original dataset
and therefore our original training set.

After data augmentation, we observed a subtle
improvement in our model’s performance on valida-
tion images based on the confusion matrices below.
Therefore, we continued forward with the augmented
dataset (Figures 7 and 8).

Fig. 7) Validation results confusion matrix with
unaugmented training data

Fig. 8) Validation results confusion matrix with
augmented training data

Our best-performing model on the validation set
was the ResNet-50 with three residual blocks re-
trained on augmented data. The final results for this
model on the test set are displayed in the figure be-
low.

Final ResNet-50 model test results
Precision: 0.604
Recall: 0.593
F1 Score: 0.595

Fig. 9) Results for ResNet-50 with three residual
blocks retrained

To better understand how we could potentially im-
prove our model in the future, we created activation
maps to visualize exactly how our model is inter-
preting misclassified images [10]. In these activation
maps, the brighter pixels indicate greater relevance
to the classification.

Fig. 10) Portrait of Koyla (Nikolay) Simonovich by
Valentin Serov [11]

We observed that often our model would perform
poorly on black and white images. The heatmap
above for example, shows how our model prioritizes
empty whitespace while predicting, when we should
be using features extracted from the painting such as
the face instead. This suggests we should train on
more black and white images in order to detect more
significant features rather than just the colors present
in such photos.

Fig. 11) Flooding by the Seine by Fritz Thalow [12]

Our current model also sometimes fails to recognize
images that are in the foreground and instead prior-
itizes objects and empty spaces in the background.
This suggests that we could potentially improve our
model by adding more images to our training set that
have subtle foregrounds and plain backgrounds.

Fig. 12) Head of an Italian Woman by John
Sargent [13]

However, our model currently performs very well on
colored images where there is one distinct object or
figure in the foreground. The activation map in Fig-
ure 12, for example, shows how our model appro-
priately uses facial features to classify Head Of An
Ttalian Woman as Realism.

Ultimately, these class activation maps suggest ap-
propriate next steps would be to add more black
and white, nondescript images of paintings to our

dataset to improve our model’s ability to classify
paintings with a limited color palette and a complex
foreground.

6 Conclusion and Future Work

Our final model did not perform as well as a panel
of art experts would, but it performed comparably
to models built for similar tasks [3]. Most mistakes
involved classifying a painting’s style as one that is
represented more frequently in the original dataset,
suggesting the need to train on more paintings from
underrepresented classes.

In the future, we’'d like to reduce overfitting, a
problem experienced by most models we tried. We
think that using early stopping could be effective, be-
cause the degree of overfitting seemed to increase in
later epochs of training. We’d also like to use weight
decay and add more unique training examples of un-
derrepresented classes.

7 Contributions

Each team member played a vital role in completing
this project. Jeffrey was critical in maintaining our
GitHub repository and training our models on our
AWS account. Additionally, Jeffrey wrote scripts to
create class activation maps in order to assist with
error analysis. Patrick contributed heavily by creat-
ing scripts to preprocess our dataset as well as aug-
ment the train data in order to improve training. In
addition, Patrick was also involved with model result
interpretation by creating F'1 score, precision, and ac-
curacy scripts. Sean was heavily involved with setting
up the ResNet-50 scripts as well as testing hyperpa-
rameters on the ResNet-50 model such as number of
frozen layers and dropout rate. Sean aided in error
analysis by creating the confusion matrix script for
visual interpretation. All three worked together to
understand existing code bases, debug code, evaluate
model performance, and present our results. Special
thanks to our Teaching Assistant Sarah Najmark who
guided us with project direction, model architecture,
and use of class activation maps.

8 References

[1] V. van Gogh, The Starry Night. San Francisco:
Museum of Modern Art, 1889.

[2] T. Balakrishan, S. Rosston, and E. Tang, “Using
CNN to Classify and Understand Artists from the
Rijksmuseum.” 2017 [Online]. Available: Stanford
University. Accessed March 16, 2019. [3] A.
Lecoutre, B. Nevgrevergne, and F. Yger,
“Recognizing Art Style Automatically in painting
with deep learning.” JMLR: Workshop and
Conference Proceedings. 2017. [Online]. Available:
Univeriste Paris Dauphine. Accessed March 16,
2019. [4] Kaggle. Painter by Numbers. 2017. Web.
16 January 2019.
https://www.kaggle.com/c/painter-by-numbers.

[5] C. Pissaro, Afternoon, Sunshine. St. Petersburg,
Russia: State Hermitage Museum 1897

[6] perseus784. BvS. 2018. Web. 12 February 2019.
https://github.com/perseus784/BvS

[7] K. He, X. Zhang, S. Ren, and J. Sun. “Deep
Residual Learning for Image Recognition.”
Computer Vision and Pattern Recognition. Dec,
2015. [Online]. Available: Arvix, arvix.org.
Accessed March 16, 2019.

[8] D. Kingma, J. Lei Ba, “Adam: A Method for
Stochastic Optimization.” Computer Vision and
Pattern Recognition. 2014. [Online]. Available:
Arvix, arvix.org. Accessed March 16, 2019.

[9] jdchen623. CS_230_Final Project. 2019. Web. 19
March 2019.
https://github.com/jdchen623/CS230_Final _Project
[10] I. Pointer, “Class Activation Mapping In
PyTorch,” Snappish Thoughts. [Online]. Available:
http://snappishproductions.com/blog/2018/01/03/class-
activation-mapping-in-pytorch.html. Accessed
March 15, 2019.

[11] V. Serov, Portrait of Koyla (Nikolay
Simonovich). 1880.

[12] F. Thalow, Flooding by the Seine. 1893

[13] J. Sargent, Head of an Italian Woman. 1878.

