Predicting protein-protein interaction interfaces
using protein coevolution

Esha Atolia*
Department of Chemical and Systems Biology
Stanford University
eatolia@stanford.edu

Abstract

Protein-protein interaction interface detection is imperative for understanding
molecular mechanism, drug design, and drug discovery. Previous work has used
structure information to predict interfaces. However, here we use a structure
agnostic method to identify protein interaction interface using just protein sequence
information. We re-purposed a UNet based method called CellUNet used for
image segmentation algorithm for protein interface prediction. Our model has a
71% categorical accuracy, which is up to par with methods that use additional
information such as structure.

1 Introduction

Proteins are the building blocks of life since they make up the network of machinery that control
most of the function of living cells. Therefore, understanding protein-protein interactions is vital for
describing, characterizing, and manipulating biological systems. Specifically, it is important to be
able to identify inter-proteasmal interaction interfaces, i.e. the residues that are in physical contact
when two proteins directly bind. Knowing this interface not only provides general mechanistic
understanding, but also provides a better avenue for drug discovery. Some proteins that are implicated
in disease, such as the Tau protein in Alzheimer’s, can be inhibited by disrupting the protein-protein
interface.

In addressing this problem, large research efforts are dedicated to parsing out the sequence and
function of proteins. Previous work includes using support vector machines on only sequence
information to predict protein-protein interactions, Bayesian networks for genome-wide protein
interactions, and a stacked autoencoder to predict protein-protein interactions based on sequence
[4,9, 10]. Despite ever-increasing collections of protein sequences available for analysis, the regions
of each protein that are responsible for its specific function remain mysterious in the vast majority of
cases. A powerful approach to overcoming both of these problems is protein co-evolution analysis.
Coevolution generally refers to the coordinated changes that occur between organisms, molecules, or
components of those molecules (such as the amino acids of a protein) that are under natural selection
to maintain functional interactions.

As alluded to earlier, with the advent of sequencing and tools such as X-ray crystallography and other
protein structural determination methods, there are >50 million sequences in National Center for
Biotechnology Information’s (NCBI) Reference Sequence (RefSeq) database and >100k 3D protein
structures in the Protein Data Bank (PDB) at our disposal. I leverage this large data set here, by
utilizing a image segmentation framework, UNet, to identify protein-protein interaction interfaces
using both sequence data and co-evolution signatures of proteins as features. The input for the
algorithm is a coevolution matrix of dimension n-by-n-by-16 and the output is a matrix of the n-by-n
matrix with 1/0 labels for interface vs not interface residues.

*PhD student in KC Huang’s lab in Bioengineering.

CS230: Deep Learning, Winter 2018, Stanford University, CA.

2 Related work

A significant amount of work has been done to identify pairs of interacting proteins using statistical
and machine learning methods such as CNNs, SVMs, decision trees, random forests, neural networks,
and conditional random fields [3, 4,9, 10]; however, less work has been done to identify specific
residues responsible for the protein-protein interaction, i.e. the residues at the interface of the two
interacting proteins. Papers that have focused on identifying protein-protein interaction sites have
used protein 3D structural information to do so [2, 5], instead of just sequence data. Previous work on
predicting protein-protein interaction interfaces has primarily focused on using sequence information
as features [7,12], whereas the work presented here proposes to use co-evolution signatures in addition
to sequence data. Ofran et. al even explicitly say "Incorporating evolutionary [...] information
may improve our method" as a future direction. Previous papers have incorporated evolutionary
information by including the conservation [1], i.e. entropy, of a protein; few have included both
sequence information and protein co-evolution information to predict interaction interfaces.

The current state-of-the-art is a new method called Siamese Atomic Surfacelet Network (SASNet),
the first end-to-end learning method for protein interface prediction [11]. It performs better than
the models that have been recently predicted. However, like much work that has been previously
pubslished, all of these methods depend on having structure information of the protein to make
interface preditions. What I a doing is novel because I am using just protein sequence information and
protein coevolution data that is derived from sequence information to make these interface predictions.
This would be incredibly useful since structural data on protein is cumbersome to attain.

Coevolution generally refers to the coordinated changes that occur
between organisms, molecules, or components of those molecules

16
‘11

Y &

1
51

’

7/
6,
n

/
’

Figure 1:

The structure of
the Nested Coevolution matrix.

This is the input to UNet.

(such as the amino acids of a protein) that are under natural selection
to maintain functional interactions. However, coevolution measure-
ments are often obscured by genetic drift, which defines a protein’s
phylogenetic history and gives rise to artefactual, covariation of
positions across the protein sequence. To overcome this problem,
KC Huang’s lab at Stanford developed a robust methodology, called
Nested Coevolution (NC), for explicitly separating the phylogenetic
dimension of coevolution signal. This approach generally improves
the signal from any existing coevolution algorithm, and NC has been
used to demonstrate that coevolution often occurs on multiple phy-
logenetic timescales within a single protein. Interestingly, NC has
been used to identify groups of residues that are evolving together
but independently of the rest of the protein, as evidenced by the lack
of similarity in the phylogenetic histories in these groups as com-
pared with the protein as a whole. These findings suggest that these
coevolving groups embody different, functionally coherent parts of
proteins such as active sites, allosteric interactions, protein-protein

interaction interfaces, etc. NC can be used to generate a cevolution matrix for our interacting proteins
of interest and use it as an additional feature set to just the protein sequence information.

3 Dataset and Features

I construct three separate datasets for training,
testing, and validating my method. I obtained
co-crystal structures of proteins from the Protein
Data Bank to generate a training set, test set and
a validation set with a 60/20/20 split totalling

about 10,000 proteins.

The pipeline for dataset generation included first
obtaining the pdb ids for all co-crystal structures
from the Protein Data Bank (PDB). These ids

140
120
100

0 50

100 0 50 100

Figure 2: On the left is one layer of the NC matrix,
and on the right is the label matrix where black
represents the regions of the interface.

were used to download the structure file from
the pdb. The files were parsed to obtain name of the two proteins, sequence of the two proteins, and
the indices residues in each protein that interact with each other (||CA4 — CAg|| < 12A (Figure 1)),

where C'A represents the (z, y, z) position of an a-carbon of one amino acid residue. NCBI BLAST+
was then used to get the top 1, 000 sequences from the refseq database. The outputted FASTA file
was then aligned using Clustal(). These aligned files are the multiple sequence alignments (MSA) of
the protein.

Coevolution matrices were then generated from these MSAs using normalized joint entropy with
an average product correction and nested coevolution. The coevolution matrices are of dimension
n x n x 16 (Figure 2), where n is the number is amino acids in the protein and 16 is the number of
windows for Nested Coevolution. After the coevolution matrices are generated, the labels for the
residues at the interface vs not at the interface are generated using the interaction information parsed
previously (Figure 3). These labels are of dimension n X n. Lastly, the Nested Coevolution matrix
text files and label text files are converted into tiffs.

4 Methods

Implementing a model for this application is s .
a complex problem for three of reasons: (1) ™
sequence of the input features matters, (2) se-
quence lengths of the two proteins are variable,

and (3) Both local and global structure are im-
portant for protein binding

output
segmentation
map

> »>|

Thus, instead of treating each amino acid’s co-
variation with all the amino acids (i.e. a row
of the coevolution matrix) as a observation or
doing pairwise comparisons between each in-
teraction pair of amino acids like people have
done previously for similar problems, I decided
to treat the problem like a segmentation prob-
lem. However, instead of having 3 channels
like a normal colored image, my "image" has 16
channels. This gets around the issue of matrices
of different sizes, of local and global structure
being important.

_J,a I }.D»W = conv 3«3, RelU
=i 3 i copy and crop

Tl [# max pool 2x2
5§ [} 4 up-conv 2x2
= conv 1x1

Figure 3: U-net architecture (example for 32x32
pixels in the lowest resolution) [8]. Each blue box
corresponds to a multi-channel feature map. The
number of channels is denoted on top of the box.
The x-y-size is provided at the lower left edge of
the box. White boxes represent copied feature
maps. The arrows denote the different operations.

The tiffs of the Nested Coevolution matrix and the label matrix were used to train CellUNet [6], a
segmentation method based on UNet [8]. The authors describe the architecture as “consist[ing] of a
contracting path to capture context and a symmetric expanding path that enables precise localization."
Note a few key changes were made for the algorithm to work on this dataset of different dimensions,
including modifying the first layer to late the larger input, changing the dataset augmentation methods
used, and change the number of labels that are required to be inputted.

5 Results and Discussion

The next step was to train the data on the UNet model. The dataset contains a total of 7909 proteins,
where 4745 were used for training and 1582 each were used for testing and validating. There were
also a few different hyperparameters that were optimized, such as the number of gradient descent
steps taken during training and the number of epochs on the test set. The performance of the model
was determined by calculating recall and precision for the validation set.

As stated above, one of the hyperparameters that was tuned was the number number of steps of
gradient descent for each epoch of training (Table 1). In optimizing the number of steps of gradient
descent for each epoch of training, it was clear that there is a trade-off between the recall and precision
as the number of steps is increased. I ended up using 1000 steps for training. Additionally, the
number of epochs of training was also optimized (Table 2). After 11 epochs there didnt seem to be a
large improvement in recall and precision and there was an increase in validation loss indicating that
additional training was leading to overfitting. This I ended up training the final model for 11 epochs.

Other hyperparameters that were tinkered with in a less systematic way included the patch size used
by the algorithm and loss function. The final patch size used was 56 and the final loss function was

Steps Categorical Recall: Precision: Recall: Not Precision: Not Validation
Accuracy Interface Interface Interface Interface Loss

100 0.51 0.62 0.46 0.42 0.55 0.78

1000 0.76 0.64 0.76 0.81 0.70 0.46

4000 0.59 0.34 0.73 0.84 0.55 0.58

Table 1: Optimizing the number of steps of gradient descent for each epoch of training.

Epochs Categorical Recall: Precision: Recall: Not Precision: Not Validation
Accuracy Interface Interface Interface Interface Loss

1 0.58 0.32 0.57 0.74 0.51 0.65

2 0.61 0.54 0.57 0.58 0.56 0.61

3 0.64 0.53 0.61 0.66 0.58 0.59

4 0.65 0.44 0.68 0.78 0.57 0.57

5 0.60 0.35 0.74 0.85 0.56 0.59

6 0.69 0.54 0.69 0.75 0.61 0.54

7 0.70 0.66 0.64 0.64 0.65 0.54

8 0.71 0.66 0.66 0.65 0.66 0.53

9 0.70 0.70 0.63 0.59 0.67 0.55

10 0.70 0.64 0.66 0.67 0.65 0.53

11 0.71 0.68 0.67 0.66 0.67 0.52

12 0.71 0.64 0.68 0.69 0.66 0.55

13 0.71 0.64 0.69 0.71 0.66 0.53

14 0.73 0.67 0.69 0.69 0.68 0.53

15 0.72 0.68 0.68 0.68 0.68 0.56

16 0.73 0.68 0.69 0.69 0.68 0.58

17 0.73 0.71 0.68 0.67 0.70 0.56

18 0.73 0.71 0.68 0.67 0.70 0.56

19 0.73 0.62 0.73 0.76 0.66 0.56

20 0.74 0.67 0.70 0.72 0.68 0.56

Table 2: Optimizing the number epochs for training.

the cross entropy loss. Additionally, after testing data augmentation methods, flipping, rotation, and
adding noise were used to augment the training data set.

The model overall performs pretty well for a majority of the proteins (Figure 4-6), however there are
some that it fails for (Figure 7). There wasnt a consistent pattern of failure that was evident. Below I
show some examples of proteins interaction interface classifications.

2NU8_proteinB: true labels (0/1)

probability interface probability not interface

100 100

150 150
200 200
250 250
300

350

0 50 100 150 200 250 50 100 150 200 250 300 350 50 100 150 200 250 300 350

Figure 4: Example of the interface of Succinyl-CoA synthetase beta chain binding with Succinyl-CoA
ligase [ADP-forming] subunit alpha (PDB: 2NUS).

6 Conclusion and Future Work

The UNet based CellUNet image segmentation algorithm re-purposed for protein interface prediction
works fairly well. There are a few different avenues that can be pursued to improve the model. First
it will be important to try to understand why the proteins that do not function well are not functioning

1GPO_proteinA: true labels (0/1) probability interface probability not interface

0 10 0 — 10 op
N -fas -
50 - 08 0{ = 08 50
s B M L W .
06 06
100 100 100
I |IIE N . . - == 9
s{_ 0a 125 08 125
=/l | 1 IIII II = e ;b %
== == = = 02 175 02 175
Il |IIm . I| I- o
1IN |l 0 N Em o 3 e
0 50 100 150 200 s 0 50 100 150 200 o

Figure 5: Example of the interface of antibody M41 dimer (PDB: 1GPO).

probablllty not interface

4V1U_proteinB: true labels (0/1) probability interface

8

8

8

3

Figure 6: Example of the interface of heterocyclase in complex with substrate and cofactor (PDB:
4v1U).

probability not interface

5YW8_proteinB: true labels (0/1)
10 0 e e wx a< IIme

1000

1200

1400

;
‘JY‘—«L Bo kil aiad ottt 00 :]
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400 0 200 400 600 300 1000 1200 1400

Figure 7: Example of the interface of ATP-binding cassette sub-family C member 8 isoform X2
binding with ATP-sensitive inward rectifier potassium channel 11 (PDB: 5YW8).

well. This can be done by looking at the class activation maps for the a protein that works versus
those that dont.

Additionally, there is an added layer of complexity that had been added to the model that is not
necessary for the problem at hand. The final label matrix is of size n-by-n but we really just need a
final vector of size n to classify all the n amino acids in a protein sequence at being at the interface
of not. To be able to do this, we can take the encoding part of UNet and instead of building the
image back up add some fully connected layers at the end to get a final output of size n. Furthermore,
the current literature has been lacking it trying to identify what additional features lead to a residue
being at the interface. There is novel biology to be discovered by looking at the class activation maps
of what regions of the original matrix lead to the classification of each residue as at or not at the
interface.

7 Github

Code for the milestone: github.com/eatolia/CS230-Final-Proposal. This is a private repository since I
do not want public access to this code. I have given my TA (Cristian Bartolomé Ardamburu) collabora-
tor access to the git repo. Here is the link invite: github.com/eatolia/CS230-Final-Proposal/invitations.

References

(1]

2

—

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]

(11]

[12]

J. R. Bradford and D. R. Westhead. Improved prediction of protein—protein binding sites using a support
vector machines approach. Bioinformatics, 21(8):1487-1494, 2005.

P. Fariselli, F. Pazos, A. Valencia, and R. Casadio. Prediction of protein—protein interaction sites in
heterocomplexes with neural networks. European Journal of Biochemistry, 269(5):1356-1361, 2002.

S. Hashemifar, B. Neyshabur, A. A. Khan, and J. Xu. Predicting protein—protein interactions through
sequence-based deep learning. Bioinformatics, 34(17):i802-i810, 2018.

R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, S. Chung, A. Emili, M. Snyder, J. F. Greenblatt,
and M. Gerstein. A bayesian networks approach for predicting protein-protein interactions from genomic
data. Science, 302(5644):449-453, 2003.

A. Koike and T. Takagi. Prediction of protein—protein interaction sites using support vector machines.
Protein Engineering, Design and Selection, 17(2):165-173, 2004.

T. Kudo. Cellunet. 2018.

Y. Ofran and B. Rost. Predicted protein—protein interaction sites from local sequence information. FEBS
Letters, 544(1):236 — 239, 2003.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015.

J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li, and H. Jiang. Predicting protein—protein
interactions based only on sequences information. Proceedings of the National Academy of Sciences,
104(11):4337-4341, 2007.

T. Sun, B. Zhou, L. Lai, and J. Pei. Sequence-based prediction of protein protein interaction using a
deep-learning algorithm. BMC Bioinformatics, 18(1):277, May 2017.

R. J. L. Townshend, R. Bedi, and R. O. Dror. Transferrable end-to-end learning for protein interface
prediction. arXiv, 2018.

M. Sikié, S. Tomié, and K. Vlahoviek. Prediction of protein—protein interaction sites in sequences and 3d
structures by random forests. PLOS Computational Biology, 5(1):1-9, 01 2009.

