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Abstract

The rapid development of deep learning algorithms and the massive accumulation
of well data from continuous monitoring has enabled new applications in the
oil and gas industries. Data gathered from well sensors are a foundation of the
oilfield digitization and data-driven analysis. The main objective of this work is to
predict well pressure based on flow rate recorded from well surface or downhole
gauges. Essentially we hope models will be able to learn the complex underground
geological composition and structure. Then the deep learning model can be served
as a simulation tool to simulate ideal condition which can not be realistic for
practical control. With advanced RNN methods, engineers can interpret long-term
reservoir performance information from responses estimated by the deep learning
model, instead of performing costly well tests or shut-ins. Here, we describe
a deep learning approach to predict the long-term well performance based on
a moderate duration of well monitoring data. Specifically, we used LSTM and
GRU as baseline models and further implemented LSTNet(Long- and Short-term
Time-series network) structure.

1 Introduction

1.1 Motivation and Objective

Conventionally in oil and gas industry, pressure and flow rate data are obtained from physical models,
which often require comprehensive geological and reservoir properties information. Besides, the
calculation of reservoir parameters requires information from wells long shut-in or long constant flow
rate period of time, which is not realistic and will lead to economic losses. What is more, sensors
especially high-accuracy permanent downhole gauges(PDG) are very expensive[4]. Therefore, we
want to explore a model which can utilize data from sensors to generate the rest data. Here, we
describe a deep learning approach to predict the long-term well performance based on a moderate
duration of well monitoring data.

The main objective is to predict well pressure based on flow rate with deep learning approaches,
which can significantly contribute to reservoir monitoring, management, and optimization[2]. The
input definitely contains gas/oil flow rate(q), and performance of adding other features like time,
time intervals as input will be explained in later chapters. The output is well bottom hole pressure
(BHP). Both of input and output are time-series data.

1.2 Data

The data is displayed in Fig.1. (a) is flow Rate (q). The flow rate used in this study is from a gas field.
Raw pressure is pre-processed to be more continuous and accurate. (b) shows the raw measurement
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of from pressure gauge. Due to the properties of gas and facility operation requirement, there might
be discontinuous or inaccurate measurement. So based on physical equations, we generated the
simulated pressure data to substitute the raw records. (c) Simulated pressure - constant time step. (d)
Simulated pressure - unequal time step. Pressure in (d) is what we used in this project.

The input and output data are pre-processed and normalized. Our train-validation-test data is split
80%-10%-10%

Flow rate
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Figure 1: (a)Input flow rate; (b),(c),(d) Output pressure.

2 Methods

Considering the BHP and ¢ are time series type of data, recurrent neural network(RNN) is preferred
to solve the problem. It can process any length of input and can compute current output with using
information from many steps back. In the project, we investigated various deep learning models to
forecast well BHP: Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), and Long-
and Short-term Time-series network (LSTNet)[1]. It turns out that LSTnet is less familiar and works
better than GRU/LSTM, so we will focus on LSTNet in illustration of architecture, hyperparameter
choices, and results analysis.

2.1 GRU/LSTM

Here we applied two RNN(GRU+LSTM) layers and one dense layer. Hyperparameters are tuned and
selected in Tablel. The result is displayed in next chapter. Because of the limit of pages, we will not
explain hyperparameter tuning process in detail.

Batch-size 8
GRU unit 512
LSTM unit 512
Loss Mean squared error
Optimizer | Adam(learning rate=0.001)

Table 1: Hyperparameter for GRU/LSTM architecture



2.2 LSTNet model

LSTNet[1] is applied in this project, which can capture short-term and long-term dependency in
dataset. It is designed for multivariate time series forecasting, whose architecture is illustrated in 2. It
is composed of convolutional layers, recurrent layers (GRU in [1]), novel recurrent-skip structure
and fully-connected layers. The convolutional layer helps to capture local dependency patterns; the
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Figure 2: An overview of the Long and Short Term Time-series Network

recurrent layers is applied to for long-term dependency; the recurrent skip leverages the periodic
pattern in dataset and makes the optimization easier. Besides skip-RNN, attention function is an
alternative method applied to learn weighted combination of hidden representations at each window
position of the input.

We applied two evaluation metrics in LSTNet model: relative squared error (RSE) in and relative
absolute error (RAE) in Eqn.2.2
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3 Experiments/Results/Discussion

3.1 Hyperparameter tuning

In this project, we investigated and tuned the LSTNet model by considering input features, and number
of past time intervals n_past as input, learning rate, CNN kernels size, dropout and evaluation metrics.
We discuss each hyperparameter performance individually in the following.

3.1.1 Input features

Various groups of input features were tested. We firstly compared performance of Groupl {Ag, g, At}
and Group2 {Agq, ¢, At, t} and found out that RSE and RAE is reduced obviously if current time ¢
considered. Adding ¢ as input can help to capture the tendency of pressure decreasing in long-term
time period, which greatly improve model performance. Then, we considered increasing ¢’s influence
in the model and applied #? term in Group3 {Ag, ¢, At, t,t?}. In addition, more input features are
explored {Aq, q, At, t,t2 AqAt, Aq/At, Aqlog(At)} as Group4. Results are displayed in Fig3,
from which we find out that input Group3 has best performance in val data set.

3.1.2 Number of past time step

Features of past time steps n_past are used as input of CNN. In the experiments, we explored n_past
value from 5 to 200, and found out that loss is smaller as n_past is small. The validation dataset RSE
and RAE are 0.2905 and 0.1262 while n_past is 5. We found only limited number of past time step
can help to improve performance. When the number becomes larger, it prevents the model focusing
on the current time features, which reduces performance. When n_past is smaller, LSTNet model
can capture more portion of features of current time step, and less of previous time steps, which
can improve the performance of predicting corresponding current pressure. Validation set losses are
displayed in Fig.4.



Input Output .l
RSE = RAE
Ag q At p 0.4568 0.2523
Ag (g At t p  0.2503/0.0980
Ag q At t t? p  0.23320.0831
Ag g At t|t? Ag*At Ag/bt |Ag*log(At) p 0.2584 0.0849

Figure 3: Performances of four groups input features
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Figure 4: Performances of various n_past values

3.1.3 Other hyperparameters

In order to achieve possible best models, other hyperparameters are also tuned. We showed the
performance of influential hyperparameters in Fig.5, within which optimal choices have been high-
lighted. We found out that dropout sensitivity and learning rate have more effects. Dropout can
randomly remove some neurons to help to generalize the model. However, removing too much
neurons (dropout=0.5) reduces the model performance and make validation set loss flip up. As for
learning rate, it is tested that it have most effects on the result. Large learning rate can have a large
update, but it will result in problems in convergence and get bad optimization results. Very small
learning rate will consume more computation time before getting optimal results. Here we present

H Val
SPEL RSE RAE
0.2 0.3254 0.1324

03 0.2906 0.1144
Dropout
0.4 0.2226 0.0773
0.5 0.2438 0.0838
L1 0.2329 0.0820
Loss
L2 0.2378 0.0876
0.001 0.2708 0.1022

Learning rate
0.01 1.7538 0.7779

5 0.2533 0.0963
10 0.2074 0.0775
20 0.2210 0.0757
30 0.2270 0.0857

# of CNN kernels

Figure 5: Performances of various hyperparameters

our hyperparameter choices in Table2

3.2 Result and Discussion

With tuned optimal hyperparameters applied, we ran GRU/LSTM and LSTNet models with various
input features and the results are visualized in Fig.6 (the first plot is GRU/LSTM; the rest are LSTNet
with various input features).

From Fig6 and Fig7, we can see GRU/LSTM model cannot capture the whole decreasing trend,
nor the large pressure variations; the same goes for LSTNet (4 features), and its prediction is more
oscillating than LSTM/GRU results; LSTNet (4 features + time) has much better performance with
adding real time as input, which can capture pressure decreasing trend and become more stable;
LSTNet(4 features + time + 3 physics-based feature) improves the model performance in large
pressure variation.



Batch-size | Dropout | Loss Ir kernel size | RNN layers
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Table 2: Hyperparameter for LSTNet
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Figure 6: Results of GRU/LSTM model (first) and LSTNet model with various features

The study found that the input of real time values is really important to reflect the trend of pressure
decreasing in the long term. Besides, the length of short term captured is worse when it’s too long.
When the short term contains too much previous time information, the model will focus less on
current time step and the performance will be decreased.

4 Conclusion/Future Work

In this project, we explored two time-sequential models in deep learning to represent dynamic flow-
rate and pressure in reservoir well. We implemented LSTM/GRU and LSTNet individually to predict
well pressure given flow rate, which is many-to-many mapping. We found out that LSTNet which
can capture both short and long term time periods has better performance, especially for capturing
extreme variations in pressure. In addition, as for the input features of LSTNet, adding real time
value can help to capture the whole pressure decreasing tendency and achieve better prediction results.

In the future, our work can be divided into two stages. First, we will focused on how to get better
predictions for large pressure variations, which can help to reduce errors significantly. Then, we
will implement continuous RNN-GAN model. Continuous RNN-GAN [3] is designed to learn the
distribution behind well production and generate realistic data. It can help us generate more well
flow rate data in real reservoir production, and better analyze and optimize the reservoir future
performance.

Structure Test_RAE Test_RSE
LSTNet (4 features) 0.4723 0.2601
LSTNet (4 features + time) 0.3392 0.1512
LSTNet (4 features + time + 0.2802 0.1002

3 physics-based feature)

Figure 7: Test data loss for LSTNet model with three different input features



5 Contributions

Yuanjun worked on data collection, building GRU/LSTM network, and testing cases in GPU. Ruixiao
worked on applying and modifying LSTNet, and adding functions to LSTNet. Hyperparameters
design are discussed and cooperated.

6 Additional Information

We would like to express our great appreciations to our TA Sarah Najmark for insightful discussions
and helpful suggestions provided to our project.
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