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Abstract

Generative adversarial network (GAN) shows superior performance in image
generation. In this work we report using GAN to generate configurations of the
2-D Ising model. We found that GAN is able to learn the distribution of the Ising
model at critical temperature. Potential applications for using GAN with Ising
model include compression of information in Ising model and simulating large
clusters, which is computationally expensive otherwise using traditional Monte
Carlo.

1 Introduction

To study the 2-D Ising model, we consider a rectangular or square lattice (an N, x N, grid). Each
site on the lattice contains one spin that either points up or down. The spin on each site interact with
its nearest neighbors (up/down/left/right). It is favorable for two neighboring spins to point in the
same direction (parallel) and unfavorable in the opposite direction (antiparallel). Mathematically, the
model’s Hamiltonian, which can be interpreted as the energy, is given by

H=> —Jsis 1)
(i)

where s; = s(z;,y;) = %1, J sets the scale of interaction between all nearest neighbor spins
sisj, and the negative sign indicates that parallel spins lowers the energy, which is favorable. The
Ising configuration s; = s(x;,y;) can be seen as a 1-channel image with 1 on each pixel. This
analogy enables us to train GAN with convolutional neural network (CNN), which are widely used in
computer graphics, on the Ising model.

We are interested in generating Ising configurations at equilibrium. Statistical mechanics predicts that
the Ising model at equilibrium takes various configurations such that its Hamiltonian for a specific
configuration satisfies the Boltzmann distribution

H(s)
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where the partition function Z =} | (s} &XP *BT normalizes the probability distribution, and kp is

a constant. In essence, the Boltzmann distribution requires more spins to be parallel when the Ising
system is at low temperature. At high temperature, this requirement is less strict.

The primary goal of this project is to use GAN to generate equilibrium configurations of the Ising
model at the critical temperature. The dataset is a collection of Ising spin configurations at the critical
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temperature, generated with Monte Carlo simulation. Our network consists of one generator and one
discriminator, with the same architecture defined in the work by Radford, et al [1]. After training,
GAN takes random noise as input and generates 1-channel 2-D images. Then, each pixel value is
converted to =1 based on the sign: positive number to +1 and negative number to —1.

A GAN Ising simulator is an interesting problem to study, as it can show the ability of neural network
to capture the underlying physics of model systems. It may also be useful for compressing information
of the Ising model. Specifying the configurations of the Ising model using pixel values involves
N; x N, values. On the other hand, with GAN, the information is stored in a much smaller vector
that is used as the input noise for GAN to generate configurations.

2 Related work

A few machine learning techniques have been used to learn and generate Ising model configurations,
such as Restricted Boltzmann Machines [2] [3], deep belief network [3] and GAN [4]. There has
also been work on interpretation of a neural network that learns model systems such as the Ising
model [2][S]. All of these techniques were able to simulate realistic Ising configurations. Quantities
calculated from the Ising states produced by these techniques, such as average energy and average
magnetization as a function of temperature, showed similar behavior with those calculated from
Monte Carlo simulation. In Liu, et al.’s work, they also showed the distribution of these quantities at
a specific temperature, which agreed well with data from Monte Carlo, demonstrating that GAN is a
powerful method for generating Ising configurations. In our work, we aim to reproduce the work,
with a few modifications, by Liu, et al. on GAN, the code of which is not available. Specifically, we
try various loss functions and optimization schemes, as well as using simpler architecture for GAN.

3 Dataset and Features

We collect data from Monte Carlo simulations. Monte Carlo simulation samples the configuration
space of the Ising model using detailed balance that satisfies equation (2). It produces reliable
Ising configurations with the correct distribution that can be obtained from various other analytical
treatment of the Ising model. Therefore, the configurations from Monte Carlo simulations are used
as the ground truth. GAN is trained on data from the critical temperature. Some ground truth Ising
configurations are shown in figure 1. Since these configurations only takes value £1 on each pixel,
we did not do any preprocessing.

Figure 1: Some real configura- Figure 2: Generator architecture
tions of the 2D Ising model

4 Methods

We use a generative adversarial network with one generator and one discriminator, following the
original DCGAN architecture [1]. The generator consists of 4 layers, each containing a transposed
convolution (also known as a fractionally-strided convolution), a batch normalization and a ReLU
activation. The transposed convolution is used to upsample from the low dimensional latent space
to high dimensional Ising configuration space. The last layer is followed by a tanh activation to set
the value on each pixel to within (—1, 1). The discriminator network shares a similar architecture,



with transposed convolution replaced by regular convolution and ReL.U activation replaced by leaky
ReLU. The regular convolution downsamples the Ising configuration space, and leaky ReLU helps the
learning process of discriminator by avoiding zero gradient. The last layer is followed by a sigmoid
activation to classify the input as real/fake. A schematic drawing of the generator architecture is
shown in figure 2 [1].

The basic principle of a generative adversarial network is to train the generator to output realistic
images, in our case the Ising spin configurations, and to train the discriminator to classify an input
image as real or fake. As training proceeds, the generator produces more realistic images and the
discriminator is more capable of identifying fake images. Formally, this procedure can be expressed
as [6]

mén max V(D,G) = Egnpy,,, log D(z)] + E.vp, () [log(1 — D(G(2)))] 3)

According to this, the discriminator tries to maximize the probability that it classifies real images
x ~ Py, as real and fake images G (z)zwpz(z) as fake, while the generator tries to minimize the
probability that fake images are classified as fake. In practice, this is realized by minimizing the
loss of the discriminator. The loss function we have tried includes binary cross entropy (BCE),
Wasserstein [7] and hinge loss [8].

During training, minibatches of real Ising configurations with real labels (1) and fake configurations
with fake label (0) are fed into the discriminator and their weights updated according to discriminator
loss. Then the discriminator is fed with fake images again, but this time with real label (1). After the
discriminator loss is back propagated, the weights of only the generator are updated. This process
essentially tells the generator to adjust its weights so that the images it produces are more likely to be
classified as real by the discriminator. For BCE loss, this is equivalent to maximizing log(D(G(z)))
instead of minimizing log(1 — D(G(z))). The latter suffers from small gradients in early stage
training, so it is beneficial to use the former.

We have also experimented with the Wasserstein loss. In this case the basic idea is that, provided
that the discriminator is 1-Lipschitz, the output is not the probability of input being real/fake, but
a score the discriminator gives to the input images. Higher score means more realistic image. To
implement this, the sigmoid activation in the last layer of the discriminator is removed. Therefore,
the loss functions that the discriminator and generator need to maximize are, respectively

LYCAN = Eipinna[D(@)] + Egmp,... [D(2)] )

L M = —Esp, ., [D(2)] )
and the weights of the discriminator are manually "clipped" (only takes on a range of values) to
satisfy the 1-Lipschitz constraint.

Besides weight clipping, we also have tried various other regularization techniques, such as gradient
penalty [9] and spectral normalization [8]. The loss function of the Wasserstein GAN with gradient
penalty is

Ly 4N = —Eorpiora[D@)] + Einpyen [D(@)] + ABanp, [(1IV=D(2)]l2 = 1)’]  (6)

where z is the random sample. It penalizes gradient deviating from the target norm 1. Also, batch
normalization in the discriminator, which relates all the samples in the same batch, can hurt the
performance of gradient penalty. So when gradient penalty is applied, batch norm should be absent in
the discriminator.

Spectral Normalization is another technique for imposing 1-Lipschitz and stabilizing the training of
the discriminator by normalizing the weights of the discriminator [8]. Experiments show that spectral
normalization performs better if the used with hinge loss

Vb(G, D) = Eyropya, [min(0, =1 + D(2))] + E,opayy [min(0, -1 — D(G(2)))] (7

Vg(G, D) = —]Ezwp(z) [D(G(Z))] ®)

Furthermore, the difference in a physical observable between the real and generated sample proved to
be important (see experiment section). We choose the average magnetization, which is simply the

sum of all the pixel values divided by lattice size. Therefore, the following may be added to generator
loss

Lmz = E[(<mz>7’eal - <mz>gen)2] )
where (m,) = m Z” Si.;j



S Experiments/Results/Discussion

The hyperparameters are primarily learning rate and batch size. The choice of optimizers are Adam
and RMSProp, and the current state-of-the-art regularization techniques include weight clipping,
gradient penalty and spectral normalization. Since our goal is to generate realistic spin configurations,
the primary standard by which we tune the hyperparameters and choose optimizers is to compare
generated figures with real figures from simulation. We train GAN with Ising samples at the so-called
critical temperature. The spin configurations at critical temperature is very random, with fluctuating
domains (i.e. ferromagnetic domains) of aligned spins. This means that in the short range the spins
want to be parallel, as dictated by eq (1), but in the long range the propensity to line up is disrupted by
thermal fluctuations, which are prominent at critical temperature. Therefore, we manually examine
the generated pictures and look for two features: is the configuration random enough and are there
many ferromagnetic domains? Pictures satisfying these two standards are considered realistic.

First, we have tried all combinations of various loss functions and optimizers, coupled with regular-
ization technique empirically shown to work well with the specific loss. The configurations generated
are shown in figure 3. All figures suffer from a similar symptom: they are not random enough. For
example, with BCE loss, the spin configuration has four major clusters and does not have many black
pixels in regions with predominantly white pixels. Wasserstein loss with gradient penalty or spectral
normalization generate configurations that seem to have an underlying periodic structure, which is
not true for Ising model at critical temperature. Hinge loss with spectral normalization seems to
generate the more realistic figures.
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(a) BCE (b) WGAN-GP (c) SNGAN - W loss (d) SNGAN - Hinge loss

Figure 3: Generated Ising samples using different loss functions and regularization tecniques: (a)
Binary cross entropy, (b) Wasserstein with gradient penalty, (c) spectral normalization GAN with
Wasserstein loss, (d) spectral normalization GAN with Hinge loss

In addition, similar to applications of GAN in other areas such as image generation, our GAN also
suffers from mode collapse. For a model with any specific loss, images similar to the shown images
were given out by the generator even when fed with different random noises. To address this, we
note that the high randomness of the Ising model at critical temperature is manifested in physical
observables easy to calculate, and so we believe that using one of the observables as a criterion, and
adding the difference in such observable between real and fake samples to the loss function, might be
beneficial. Since the observable in each real sample configuration is a random variable relating to a
well-defined probability distribution (see eq (2)), by incorporating this observable we in effect help
GAN learn the distribution and generate samples with sufficient randomness and great diversity.

(a) BCE (b) WGAN-GP (c) WGAN (d) SNGAN - Hinge loss

Figure 4: Generated Ising samples using different loss functions and regularization techniques, and
also an added penalty term for average magnetization in the generator loss
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Figure 5: Histogram of the average magnetization of a collection of generated samples using different
loss, regularization and with added term that take into account average magnetization in the losses

Indeed, when L,,_ from eq (9) was added to the generator loss, the quality of the generated samples
was greatly improved, as shown in figure 4. To quantitatively evaluate our model, we also plot the
histograms of the average magnetization (m.) of the generated and real samples, in figure 5. GAN
with hinge loss and spectral normalization shows superior performance over the others in that the
configuration it generates is noticeably the most random and it produces a distribution of (m.) in
good agreement with that of the real data. We believe that this is due to the robustness of hinge loss
towards outliers in the data, and so it performabce well for Ising model, which does have highly
random configurations.

We have also monitored how the loss of the generator and discriminator change with training
iterations. As seen in other GAN training, the losses do not provide much useful information about
the convergence of the model. As an example, consider the losses of the generator and discriminator
when hinge loss is used (figure 6). Both losses fluctuate about some values and show no sign of
converging, while in fact as GAN is trained with more iterations, it produces more realistic images.
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Figure 6: (a) Uppder: discriminator loss, lower: generator loss; (b) Generated sample after half of the
training set was used; (c) Generated sample after two epochs; (d) Generated sample at the end of
training

6 Conclusion/Future Work

We have successfully trained GAN with hinge loss and spectral normalization on spin configurations
of the Ising model at critical temperature. The generated configurations are visually similar to real
samples, and the distribution of average magnetization is highly similar to that of the real Ising model.
Adding to generator loss a penalizing term for the difference in average magnetization between fake
and real samples shows great improvement. In the future, the model should be tested at various other
temperatures, and may be used for compressing information of the Ising model.

7 Contributions

S. L. made the poster and edited the report. F. L. and T. L. edited the poster and wrote the report. All
authors wrote part of the GAN and Monte Carlo code. GAN and Monte Carlo code can be found at
https://github.com/t1iu26/Ising_dcgan
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