Applying a Recurrent-Neural-Network Model to the
Assessment of Problem-Solving Skills

Max Arseneault (marsenea), Karen Wang (kdwang)
Department of Computer Science
Stanford University

Abstract

This project explores how deep-learning algorithms could be applied to automate
assessment of college students’ scientific-problem-solving skills, using log data
generated in the PhET “Black Box Problem” simulation. Specifically, we investi-
gated the performance of different deep-learning algorithms trained on sequences of
students’ interactions to predict their problem-solving performance. The Recurrent
Neural Network (RNN) model achieved relatively high performance as measured
by accuracy, with improvements needed on the precision and recall metrics for the
positive class.

1 Introduction

Our project explores how machine-learning algorithms could be applied to assess students’ problem-
solving skills through the large volume of log data generated in an interactive, science simulation,
specifically the PhET “Black Box Problem” simulation (5). Problem-solving skills refer to students’
ability to solve scientifically-oriented questions through data collection, interpret data, as well as
formulate solutions. In the past, the assessment of such skills has been limited, as students’ answers
to multiple-choice assessments capture little information about the problem-solving process that they
went through. The interactive simulation environment affords and necessitates key problem-solving
practices (e.g. collecting real-time data, testing a proposed solution) that would be infeasible to carry
out with paper-and-pencil tests. The simulation thus yields rich and detailed data on the problem-
solving process that individual participants have gone through and the problem-solving practices they
have adopted. Luckily, the proliferation of machine-learning algorithms affords education researchers
the opportunity to measure students’ problem-solving skills in an automated fashion and at scale.
One promising recent approach is Deep Knowledge Tracing (DKT), a recurrent neural network
(RNN) model that makes predictions on learning outcomes based on a sequence of interactions that
students undertake (4). The model intends to address the problem of knowledge tracing in computer-
supported education, in which "a machine models the knowledge of a student as they interact with
coursework"(4). We intend to adopt the approach of Deep Knowledge Tracing on user-backend
data from the “Black Box Problem” simulation embedded in the PhET Interactive Simulations, a
STEM-education project founded by Carl Wieman. With over 100 million uses worldwide this past
year alone, augmentations to the PhET framework would be globally impactful (5). Knowledge
tracing, or machine modeling of student knowledge during coursework interaction, can be used for
better automated and more detailed assessment, intelligent curriculum design, discovery of structure
in student tasks, personalized allocation of resources based on students’ individual needs, and the
extension of learning gains provided by one-on-one tutoring to anyone in the world, thus advancing
global education equity (4).

CS230: Deep Learning, Winter 2019, Stanford University, CA.

- S
Black Box 7 v 1

|\4LJ (@ Labels

battary g Show Electrons

wira

\
.
light bulby

Explore

resistor

Figure 1: The Black Box Problem Interface

2 Related work

The task of modeling and evaluating students’ knowledge and problem-solving skills has received
extensive interest from the fields of educational data mining and learning analytics (1; 3); however,
most of this interest has been directed towards Massive Open Online Courses (MOOCS) rather than
interactive-learning environments (2). One of the sparse, researched examples of a interactive-learning
environment is IPRO, a programming game for iOS devices where students program soccer-playing
"bots" to compete in a multiplayer, online game (2). This research was quite analogous to our own,
but focused on programming knowledge and mining of structure from student tasks rather than
physics knowledge and automated assessment. As for research related to Deep Knowledge Tracing,
the seminal paper, authored by Piech et al., introduces the technique and argues for its predominance
over other relevant dynamic probability models at the task of knowledge tracing. We were particularly
influenced by the paper’s method of encoding student interactions as input to a recurrent neural
network. Deep Knowledge Tracing has a robust presence in the educational-analytics literature; its
shortcomings have been addressed with augmentations such as the regularization techniques outlined
in Yeung et al (6).

3 Dataset and Features

For this project, we used the event-log data generated during 178 researcher-administered, student
attempts at solving the PhET “Black Box Problem” simulation (5) (Figure 1). Problem solvers
investigated the electrical configuration behind the black box by connecting electrical components
and measurement tools to the black box and observing the outcomes. Students were given 15 minutes
to solve the problem at varying difficulty, and their attempted solution was given an objectively-
calculated assessment score (0-6).

Since this user-backend data, which consists of console logs from 178 sessions of students attempting
to solve the black-box problem, is particularly tortuous, data processing was our main encumbrance.
Each session was composed of over 10,000 JSON lines corresponding to console events ranging from
clicking-and-dragging to changing a light bulb’s resistance. The composition of each JSON line is
shown in Figure 2. Due to poor documentation of console event nomenclature, our first step was to
author a comprehensive event taxonomy, detailing each node in the JSON-line tree. This taxonomy
served as a dictionary mapping applicable student behaviors to console outputs. Subsequently, as a

learner_id

> phetiolD

[~
> events > data

Ho

4’

Figure 2: JSON-line hierarchical structure with highlighted portions relevant for feature extraction.

y

proof-of-concept and a means of familiarizing ourselves with the data, we coded an event description
“chatbot,” code which narrated students’ actions and the current circuit state given this data as input.

Once we had written enough functions enabling us to process and manipulate our data, we diverted
our attention to feature extraction. Before dealing with sequence-model features, we extracted
macroscopic features, bird’s-eye-view features from the session as a whole. These features were
cumulative statistics enumerating the number of times each circuit component was clicked on, added,
and deleted, the number of circuit connections made, and the number of cuts made to the circuit. This
processed data was appropriate for use in a vanilla neural network, in which each session is processed
individually. Finally, we moved on to extract more microscopic features which ideally unveil the
user’s decision process. These action-by-action features are suitable for sequence models such as
RNNs. To evolve beyond our more primitive, vanilla neural network features, we used NetworkX, a
Python package for analysis of complex networks, to maintain an isomorphic model of the on-screen
circuit as the student tinkered (Figure 3). From this internally-stored representation, we were able to
extract features such as the number of edges and nodes, the number of simple cycles, the average
node degree, various connectivity metrics, the graph diameter, the clustering coefficient, the number
of strongly-connected components, the independent-set size, as well as various connectivity metrics.
Because we struggled with too few training examples and exceedingly long sequence lengths, we
only ended up incorporating the simple cycles feature into our preliminary sequence vector data. In
the end we settled on 12 features for each possible action, represented in a one-hot vector. These
actions were adding/deleting a wire, light bulb, resistor, or battery, constructing or deleting a circuit
loop, and using the voltmeter or ammeter. With problem solvers’ sequence data and their associated
solution scores, we train an RNN to predict a particular student’s success at solving the black-box
problem.

4 Methods

Due to poor initial performance on our seven-category (0-6) classification problem, we collapsed
the categories into low-performing and high-performing (0-1), turning our tasking into a binary
classification problem. For our baseline neural network, which was used with the earlier described
macroscopic, session-level features, we settled on an architecture with a single, 32-unit, hidden layer

<>

Figure 3: Graphical representation of circuit made with NetworkX package.

hidden layer
inputlayer ”l \3
)V
= 2) output layer
N\ — =
X2 (3) N
- "/ sigmoid
i activation
;)(’7 \ dropout rate =0.1
(32)

tanh activation

Figure 4: Baseline neural network architecture schematic.

and seven features for our input layer (Figure 4). We used the binary cross-entropy loss function, the
Adam optimization algorithm, and dropout regularization with a rate of 0.1. With an 80-20 train-test
set split, we trained for 200 epochs.

As for our action-by-action, sequence-model data, we trained first with a unidirectional RNN model
with a 16-unit LSTM layer before adding an Attention mechanism. Since the sequence lengths varied
from 15 to over 200 actions, we capped the maximum sequence length at 100 and zero-padded all
samples when the sequence length was less than 100. The maximum sequence length was chosen
after analyzing the distribution of the sequence length and incorporating the information that 80

5 Results/Discussion

The results of our three neural-network-model variations are summarized in Table 1. In addition to
overall accuracy, we consider the precision and recall metrics. Precision is the number of samples
correctly labeled as positive divided by the total number of samples labeled as positive by the model;
recall is the number of samples correctly labeled as positive divided by the total number of positive
samples in the ground truth. Since our dataset is class-imbalanced with only 20% positive cases,
the precision and recall metrics allow for a better measurement of the predictive performance of the
models.

output

sigmoid
activation

Attention

attention attention
weights attention weights
weights

LSTM ‘ LSTM LSTM

xtl (xt2 | (w00)

Figure 5: RNN with LSTM cells and Attention architecture schematic.

The large gap between the training accuracy and test accuracy strongly suggests that all three models
are overfitting the data. We attempted a variety of regularization techniques and reduced the number
of parameters in these architectures, but were unable to further close the gap with our limited data size.
Surprisingly, our baseline neural network achieved the highest test accuracy across the three models.
This may again be due to our small dataset, but further research should be done to compare the
strengths of cumulative, session-level features and of action-by-action, sequence features. Attention
appears to have almost always helped our performance according to our chosen assessment metrics;
this is likely attributable to the fact that most events in our sequence data, i.e. most student actions,
reveal very little about their performance and level of understanding. Our RNN model with LSTM
cells and Attention achieved relatively high performance as measured by accuracy, but improvements
are needed on the precision and recall metrics for the positive class.

Model Baseline Neural Network || RNN + LSTM || RNN + LSTM + Attention
Training Accuracy 0.98 0.94 1.0
Test Accuracy 0.78 0.64 0.72
Precision (Class 0/1) 0.83/0.50 0.69/0.25 0.74/0.60
Recall (Class 0/1) 0.89/0.38 0.88/0.09 0.92/0.27
F1 score (Class 0/1) 0.86/0.43 0.77/0.13 0.82/0.37

Table 1: Results and assessment statistics for each model class.

6 Conclusion/Future Work

Deep learning algorithms hold promise to model students’ problem-solving skills based on large-
scale log data. However, the performance of our algorithms were constrained by the small, dataset
size. More work is needed to improve the precision and recall of the algorithms, especially for the
prediction of positive (successful) cases. This can be achieved by further data collection, realignment
of our task definition, or smarter, human-engineered features. During our research we attempted to
incorporate the prior-mentioned graph analytics features, but these led to poorer model performance.
Ideally one would provide the entire graph to the neural network; however, this would require a
dynamic number of features and learned understanding of graph structure. Hamilton et al. notes that
traditional machine approaches often rely on summary graph statistics, kernel functions, or carefully
engineered features to measure local neighborhood structures in order to extract structural information
from graphs, remarking on the lack of a clear solution to this problem. Thus one further approach we
might attempt is to reduce our internal, graph representation of the circuit to an equivalent circuit
by contracting redundant wires and trimming invalid appendages of the students’ circuits. This may
allow us to not only simplify our representation of the program state, but also will allow us to better
codify the student’s knowledge state. Human-engineered features of this form that more obviously
map onto a student’s knowledge state would likely facilitate Deep Knowledge Tracing as well as
make the model’s "learning" more comprehensible to humans, ideally revealing structure in the
student’s learning progression.

Additional explorations will include running unsupervised clustering algorithms on this sequence in-
formation to uncover patterns reflective of problem-solving performance. We will perform necessary
data pre-processing to more easily categorize individual program states. Once pre-processing is com-
plete, we will run classical clustering algorithms, such as X-means and K-means, on program states
and subsequently construct a state map, with edges denoting transition probabilities, representing
these mined, program-state clusters [2]. Such a state map can be taken as a Markov Decision Process
(MDP) and used with reinforcement learning.

7 Acknowledgements

The project received advice and guidance from Professor Carl Wieman at the Graduate School of
Education and Department of Physics, and Ana-Maria Istrate, a research associate student in the
Wieman Group.

8

Contributions

Data Collection and Raw Data Clean-up: Karen Wang

Data Processing: Max Arseneault

Machine Learning Model Training: Karen Wang and Max Arseneault

Project Write-up: Max Arseneault and Karen Wang

References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]
(9]

Berland, M., Baker, R.S. and Blikstein, P., 2014. Educational Data Mining and Learning Analytics: Applica-
tions to Constructionist Research. Technology, Knowledge and Learning, 19(1-2), pp.205-220.

Berland, M., Martin, T., Benton, T., Smith, C.P., Davis, D., 2013. Using Learning Analytics to Understand
the Learning Pathways of Novice Programmers. Journal of the Learning Sciences, 22(4), pp.564-599

Gobert, J.D., Sao Pedro, M., Raziuddin, J. and Baker, R.S., 2013. From Log Files to Assessment Metrics:
Measuring Students’ Science Inquiry Skills Using Educational Data Mining. Journal of the Learning
Sciences, 22(4), pp.521-563.

Hamilton, William L., Rex Ying, and Jure Leskovec. "Representation learning on graphs: Methods and
applications." arXiv preprint arXiv:1709.05584 (2017).

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J. and Sohl- Dickstein, J., 2015. Deep
Knowledge Tracing. Advances in Neural Information Processing Systems, pp.505-513

Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Weiman, C. and LeMaster, R., 2006. PhET:
Interactive Simulations for Teaching and Learning Physics. The Physics Teacher, 44(1), pp.18-23

Yeung, Chun-Kit, and Dit-Yan Yeung. "Addressing two problems in deep knowledge tracing via prediction-
consistent regularization." arXiv preprint arXiv:1806.02180 (2018).

https://keras.io

https://networkx.github.io

[10] http://www.numpy.org

[11] https://scikit-learn.org

[12] https://www.tensorflow.org

