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Abstract

At this very moment, there are just under 5000 satellites orbiting the planet. In
2018 we saw an increase in the number of satellites compared to 2017 of 4.79%,
and this number is expected to continue to increase in coming years[1]. This
increase in satellites will inevitably bring with it an increased proliferation of
satellite imagery, which can be used to solve global-scale problems from tracking
the effects of climate change and allocating resources during natural disasters, to
predicting traffic flows in real time and tracking shipping resources around the
world. Data at this scale can only be efficiently analyzed automatically, but until
recent advances in deep learning this was not possible. In this paper, we set out to
detect and localize 15 distinct classes of objects using a dataset containing aerial
images obtained from satellites. Using transfer learning with two YOLO Models,
we output the predicted classes and corresponding bounding boxes for each object
contained in the given satellite image. We were able to achieve mAP for our best
class of 0.87, but our mAP over all classes was only 0.1336, which is less than
desired performance. We were able to identify clear next steps, and our model
architecture shows promise for stronger performance with future work.

1 Introduction

Already today, far more satellite imagery is being collected than can be usefully analyzed with current
technologies. Private companies such as SpaceX and Blue Origin are increasingly making it cheaper
and more accessible to launch satellites, and governments like India and China are working to build
their own space programs. This means we can expect the number of satellites in orbit to steadily
increase in the coming years. The increase in satellites will almost certainly correspond with an
increase in satellite imagery. These images, analyzed correctly, can then help solve global problems
from resource tracking and allocation to scientific research. Many applications require the ability
to correctly label significant features such as building footprints and roadways. As we transition
into having bigger and more complex datasets, it is becoming increasingly important for us to have
an automated system to detect objects from the troves of satellite images at our disposal. This is
because it is no longer possible to manually comb through the millions of satellite images taken each
day. In this project we attempt to label 15 distinct classes of objects using a dataset containing aerial
images obtained from satellites. Our dataset consists of 1869 satellite images containing 15 classes.
Using transfer learning with two YOLO Models, we output the predicted classes and corresponding
bounding boxes contained in the given satellite image.
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2 Related work

Before Redmon et al. published their seminal YOLO paper in 2015[2], Object detection was mainly
accomplished through models such as DPM and R-CNN. YOLO was shown to be much faster than
these other models because of it’s ability to process a full image in a single neural network. Since then
YOLO has been improved to it’s current version of YOLOv3[3] which increases accuracy by using a
bigger network while still not sacrificing too much computational speed. YOLO has been used in
various object detection tasks such as pedestrian detection in video surveillance.[4] The authors of
that paper found that YOLO struggled to distinguish small close human figures in a group. They
found that gradually changing the network architecture somewhat improved YOLO’s performance
on these clustered small groups of people. YOLOV3 can also struggle with high resolution input
images because it down samples the images to a lower resolution which in turn makes it difficult
to detect small or distant objects[5], thus it can sometimes be better to not down sample the high
resolution image if you are trying to detect small or distant objects. Finally Radovic et al. showed
that after training for 45 000 iterations and tuning their YOLO model’s hyperparameters it is possible
to achieve a high detection and classification accuracy using YOLO on aerial imagery (84%)

3 Dataset and Features

For our project we will be using the DOTA satellite aerial images dataset for object detection[7].
This dataset contains 1869 aerial images from different sensors and platforms. Each image is of the
size in the range of 800 x 800 to 4000 x 4000 pixels and contains objects with a variety of scales,
orientations, and shapes. We have 15 associated classes representing different objects to be detected
such as a baseball diamond, small vehicle or a large vehicle. The split for how many times each class
appears in our dataset can be seen below:

Figure 1: number of occurrences of each class in dataset
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The bounding boxes for these objects are skewed quadrilaterals encoded as x, y pairs (which will
mean lower IOU for the YOLO model in many cases). We have pre-processed these images to alter
these skewed labels to the standard YOLO label format. Our original data also came with labels
which described whether the objects to be detected in the image are difficult or not to detect. To
improve our performance given our time constraints we removed all the images containing difficult
examples from our dataset (about one-third). We also wrote code that crops and flips certain images,
improving our detection of certain classes. We then took these altered images and added them to our
training data. We shuffled the resulting images and used a 60/20/20 train/val/test split.



4 Methods

We used transfer learning on two darknet models[8]: As a baseline training model we used a 15 layer
"tiny" YOLOv2 and for our main model we used the "regular” 30 layer YOLOv2 model.

Figure 2: standard YOLO model
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We used transfer leaning on the darknet implementation of YOLOv2 model. The darknet model was
pre-trained on ImageNet. We modified the codebase and architecture of the darknet YOLO model to
account for our 15 classes rather than the original 80 classes. We re-configured our image resolution
to 718x718 (1024 x 1024 for our tiny YOLOV?2 architecture) and trained with batch size of 64 and
subdivision size of 8 on a 30 layer network (15 layers for tiny YOLOV2). We used the loss function
given in the original YOLO paper[2]:

Figure 3: YOLO loss function
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This is the sum-squared error between the predictions and the ground-truth. This loss comprises the
classification loss, the localization loss (errors between the ground truth and predicted boundary box)
and the confidence loss (how confident we are that there is or is not an object in our boundary box.)

(9]

5 Experiments/Results/Discussion

After the aforementioned data cleaning, we decided to implement a tiny YOLOv2 model with only
15 layers and see what results we could achieve. We stopped training our model after about 2000
iterations. After inspecting our loss of our model, we noticed our model was under-fitting our data.
We therefore decided to proceed with a larger network of 30 layers. To accommodate the larger
number of parameters, we downsized the input image resolution from 1024 x 1024 (for the tiny
model) to 768 x 768. We trained this model for 7000 iterations. As expected the larger model



had a lower loss of 46 compared to the tiny model loss of over 182. The standard model was also
much better at class recognition specifically than the tiny model. When training the tiny model we
found that mini batch sizes of 64 with 2 subdivisions works well. This is probably because the tiny
architecture is much smaller than the regular YOLOV2 architecture and thus we can process more
images at a time with our GPU. When training the regular YOLOv2 model, we found mini batch
sizes of 64 with 8 subdivisions works well with the regular YOLOv2 model. We furthermore found
that using a learning rate of 0.05 with momentum of 0.9 worked well for our model.

Figure 4: Tiny YOLOv2 and regular YOLOV?2 training loss, respectively
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A common evaluation metric for object detection is mean Average Precision (mAP), which is the
average precision of the maximum precisions at different recall values. The graph below shows our
mAP for our test set

Figure 5: YOLO mAP by class
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Since there is an online leaderboard of other models’ performances on our dataset[7] We can compare
our results to see how well our model did. Our model’s overall mAP of 13.36% puts us under 0.04
percentage points away from making the 77 person leaderboard. Most models on the leaderboard
used RCNN’s or other models besides YOLO. However our average precision for the tennis-court;
large vehicle; soccer-ball-field; basketball court; swimming pool were in the range of results on the
leaderboard. Our precision values are at the bottom of the leaderboard. However we only trained our
model for 7 000 iterations. It is recommended to train YOLO models for 2000 iterations for each
class you have[10] which in our case of 15 classes, would mean an ideal number of iterations to train
would be 30 000 iterations. This means we only trained just under 25% of the ideal training time. We
are confident with more training we would improve our scores and make it higher on the leaderboard.



Figure 6: High mAP predicting tennis courts

Our model does surprisingly well on the Tennis-Court class, this is most likely the case because there
is a very distinct color difference between the tennis-courts and their surrounding borders. They are
also very uniform in shape, are often coupled side to side in our dataset and are relatively large objects
compared to some of the other class objects such as boats (in which our model performs poorly.)
We also perform poorly on small and clustered objects. This phenomenon was mentioned in the
original YOLO model to occur because YOLO imposes strong spatial constraints on bounding box
predictions and thus can only predict a limited number of small objects if they appear close together.

Figure 7: Low mAP predicting vehicles

6 Conclusion/Future Work

We found that though YOLO is a fast and versatile algorithm, it is not aptly suited in its current form
for efficient object detection of aerial satellite images. This is mainly because of the nature of satellite
images. They have high resolution and can have small objects clustered close together and in various
orientations. We did manage to achieve a mAP of 13.36%, after training our model for only 7000
iterations, which put us close to some otherYOLO models that have trained on the same dataset.[7]
Since we performed poorly on most of the classes that are rarely represented in our dataset. Next, we
would try using cropping, flipping, and other augmentation tricks to balance the relative distribution
of classes in our dataset. Furthermore if we had more time and computational resources to do tackle
the problem, we would also train our model for 30 000 iterations and possibly explore tackling this
problem with another model such as faster R-CNN.
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9 GitHub Repo and Drive Link for Project
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