Genre-detection with Deep Neural Networks

Matt Jones, Daniel Way, and Yasaman Shirian

Abstract

With the emergence of online music availability, came a vast change in the prefer-
ences and distinguishability of listener taste with respect to musical genres. Pop
music, for example, has seen a number of songs such as Marc Ronson’s "Uptown
Funk" borrowing 1970’s funk sensibilities, or Avicii’s "Wake Me Up" which fuses
singer/songwriter and country instrumentation into a modern dance hit. The pop-
ularity of these songs demonstrate how genres can creatively borrow from each
other to create invigorating songs. While much previous work has been put into
music genre classification, very little have explored this emerging phenomenon
more deeply.

Our model was able to represent constituent stylistic features of songs from spec-
tographic representations of musical data from several sources. After analyzing
and fine-tuning a previously built neural network architecture, we were able to
create a novel convolutional neural network model that achieves 95% accuracy
upon training for 10 distinct musical genres, with 82% accuracy of genre detection
achieved on test data, providing an accurate depiction of genre influence in the
songs examined.

(The code for this project is available at https://github.com/sniper-wolf-N7/cs230-
ProjectSpace.git)

1 Introduction

Music genre classification is the process where a piece of music is recognized, understood, and
differentiated by a conventional category as belonging to a shared tradition or set of conventions
(Cohen and Lefebvre, 2005; Sadie, 1980). In this project, we were interested in working on genre-
detection as a probabilistic distribution of various genres, as they pertain to the underlying styles
of songs, albums, and artists. We start by using a neural network model created by [1] which has
accuracy of 77% for tagging 10 genres and fine tune it to achieve higher accuracy. We aim to fine-tune
model to detect 7 genres : pop, rock, classical, jazz, country, hip hop, and blues. After testing the
previously described model, we then proceeded to build our own model encompassing best-practices
we learned in studying the previous iteration, and incorporating 3 additional genres (reggae, metal,
and disco ironically) in order to compare the accuracy achieved by both classifiers.

2 Dataset

For our dataset, we used multi%)le open source music datasets, including selected works from GTZAN
I FMA(free music archive) >. The GTZAN dataset consists of 1000 audio tracks each 30 seconds
long. It contains 10 genres, each represented by 100 tracks. The tracks all have a sample rate of
22050 Hz in Mono, 16-bit .wav format audio files. The FMA dataset consists of audio tracks with
eclectic mix of genres beyond the genre features we were hoping to analyze for the project. This led
to the FMA dataset being harder to train on for accurate analysis of genre-features represented in our

'http://marsyas.info/downloads/datasets.html
2http://freemusicarchive.org/

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

model. Input data for both models are the preprocessed mel-spectogram representation of the music
data. These spectograms are vector sequences derived from the Fast Fourier Transform (FFT) of the
raw audio signals in mel-scale. Recent works have been shown that with mel-spectograms better
results is achieved in genre-detection.

3 Related Work

In the paper written by [1], an analysis was conducted to determine what type of architecture
would best characterize genre amongst songs in the GTZAN dataset. Convolutional neural networks
were desirable for their ability to efficiently analyze spectographic features of the audio files with a
relatively low computational budget. We found this method to be favorable for feature extraction
as well, as recurring patterns within the audio are represented well via intensity and lateral position
within the spectographic images.

Figure 1: Comparison of Mel Spectograms in the rock (left) and hiphop (right) genres

Table 1 provides some methodologies and accuracies to compare to across the GTZAN dataset. After
reviewing these works, we believe that aiming for an accuracy of 80 — 85% would demonstrate an
ideal method for genre-classification.

Table 1: Previous work for comparison to feature-detection CNN
Methodology Accuracy

Non-machine learning:
ADABOOST (Bergstra et al. 2006)
82.5%
Machine learning:
CRNN (Jiménez and Ferran, 2017) 77.89%

4 Experiments

4.1 Jimenez Architecture

We have used the pre-trained weights from git [1]. This network is based on the primary architecture
by [2]. Their network consists of 4 stacked CNN layers comprised of [CONV - Batch Normalization
- MaxPool -Dropout] followed by 2 GRU layers with size 32 and a softmax layer at the end. However,
after using the pre-tuned weights, we do not observe high accuracy as it is expected (60% on our
personal music library). We focused on optimization methods (Adam vs SGD), number of freeze
layers (freezing first 3 conv layers versus no freezing), and architecture (adding GRU versus LSTM).
We provide 6 different models:

e Adam optimization with learning rate 0.001, batch size 16:

— No freezing layer

— first 3 Conv layer freezed + 4 GRU layers at the end

— first 3 Conv layer freezed + 1 GRU + 3 LSTM layers at the end
o SGD optimization with learning rate 0.001, batch size 16:

— No freezing layer

— first 3 Conv layer freezed + 4 GRU layers at the end

— first 3 Conv layer freezed + 1 GRU + 3 LSTM layers at the end

Batch size of 16 was optimal in order to fit the data in memory. We also did explorations with learning
rate(0.1, 0.01,0.001), which proved to have an insignificant effect. The assumption underlying this
model is that CNNs on input side are useful for local feature extraction and then RNN is more useful
for temporal pattern aggregation of the sound.

Input audio for fine-tuning process is 30 seconds long from both FMA and GTZAN, preprocessed to
get 1366 frames for 96 mel bins. Note that for fine-tuned Jiménez model, we used 7 genres instead of
10 here for the sake of time and computational efficiency. However, the new proposed model in this
project is able to tag 10 different genres.

training dataset accuracy with SGD training dataset accuracy with Adam
10
09
09
08
08
07
[l 07
E g
3 2
gos gos
0s 05
|/ == No freezed layer 04 = No freezed layer
04 first 3 Conv layers freezed + 4 added GRU first 3 Conv layers freezed + 4 added GRU
—— first 3 Conv layers freezed + 1GRU + 3 added LSTM 03 —— first 3 Conv layers freezed + 1GRU + 3 added LSTM
0 10 20 0 0 50 0 10 20 30 20 50
number of epochs number of epochs
test dataset accuracy with SGD test dataset accuracy with Adam
08
07
07
06
> 506
g g
5 5
g os 3
g gos
04 04
1 |= Nofreezed layer —— No freezed layer
first 3 Conv layers freezed + 4 added GRU 03 first 3 Conv layers freezed + 4 added GRU
03 —— first 3 Conv layers freezed + 1GRU + 3 added LSTM —— first 3 Conv layers freezed + 1GRU + 3 added LSTM
[10 20 k] 0 50] 10 20 30 20 50
number of epochs number of epochs

Figure 2: Accuracy versus number of epochs for different architectures and optimization methods

training dataset loss with SGD training dataset loss with Adam
18 —— no freezed layer 175 —— nofreezed layer
164 Tiest 3 Cony layers freesed -+ 4 a0ded GRU first 3 Conv layers freezed + 4 added GRU
\\ — first 3 Conv layers freezed + 1GRU + 3 added LSTM 150 ~—— first 3 Conv layers freezed + 1GRU + 3 added LSTM

gt a
8 8125
212 2
2
B0 g 100
E : 075
g os

06 * 050

04 o 025

02 000

[10 20 30 0 50 [10 0 30 40 50
number of epochs number of epochs
test dataset loss with SGD test dataset loss with Adam
18 —— no freezed layer 18 —— no freezed layer
first 3 Conv layers freezed + 4 added GRU first 3 Conv layers freezed + 4 added GRU
—— first 3 Conv layers freezed + 1GRU + 3 added LSTM 16 —— first 3 Conv layers freezed + 1GRU + 3 added LSTM

16
@2 @
8 S 14
2 2
g4 g
H €12
812]
5 510

10

08
[10 20 30 40 50 0 10 20 30 0 50
number of epochs number of epochs

Figure 3: Loss versus number of epochs for different architectures and optimization methods

4.2 Novel Architecture

For our second experiment we built a CNN to predict genre using the GZTAN data. Our first goal was
to overfit a small subset of the data to ensure we had a functional model and tune the hyperparameters
to meet this goal. We started with an architecture of 3 stacked CNN layers comprised of [CONV

- Batch Normalization - MaxPool] followed by a 10 unit fully connected layer with a softmax for
predicting the genre and Adam for optimization. We used an initial training set of 190 music samples
and validation set of 30 samples (19 from each genre for training and 3 for validation). During
this initial overfitting experimentation the key hyperparameter choices we made were related to
normalization and the learning rate. Results can be see in Table (2).

Learning Rate Normalization Training Accuracy Validation Accuracy

.0005	No	20%	20%
.0001	No	99.5%	43.3%
.00005	No	99.5%	33%
.0005	Yes	13.7%	13.3%
.0001	Yes	99.5%	33%
.00005	Yes	99.5%	40%

Table 2: Accuracy based on different learning rate

Following the overfitting experiment we decided to move forward with a learning rate of 0.00005 and
to normalize the data. Next, our goal was to get the model to generalize better rather than overfitting
the training data. Our first tactic was to use more of the dataset available. We gradually increased
this to see the impact but even with including the full data set of 900 samples we only achieved 46%
validation accuracy. We then decided to augment our dataset by cutting each 30-second sample into 3
10-second samples. This had two positive effects for reducing the high variance problem: first, it
tripled our dataset size and second, it significantly decreased the number of parameters in our model
in the fully connected layer (about 3x reduction). With this we were able to achieve 76% accuracy.
(Table 3)

Clip Length Train/ Val Size Paremeters Training Acc. Validation Acc.

| 30sec | 500/50 | 5,104,714 | 99% | 38% |
| 30sec | 900750 | 5,104,714 | 99% | 46% \
| 10sec | 2700/ 150 | 1,664,714 | 96% | 76% |

Table 3: Effect of data augmentation

With 76% accuracy on validation without a full overfitting on the training data we turned our attention
to once again creating a slightly more powerful model and then using hyperparameter tuning and
architectural decisions to improve performance. Ultimately we were able to obtain 82% accuracy with
a final architecture of 3 [CONV - Batch Normalization - MaxPool] layers, a 100 hidden-unit layer
with 50% dropout and tanh activation, and a final 10-unit softmax layer. The full set of experiments
in this last phase of experimentation can be seen in Table (4).

5 Conclusion

We have explored 3 different architectures with 2 different optimization methods for fine-tuning
the model proposed by Jimenez [1]. The provided plots demonstrate the cross entropy loss and
accuracy versus number of epochs for training and test dataset. At the conclusion of our development,
we were able to achieve 85% accuracy for test set. This is higher than the original model, as well
as the non-neural network classifiers we examined at the onset of this project. We believe that
the richer mix dataset of FMA and GTZAN and improved architecture were among the factors in
getting better performance. Looking at our results, Adam optimization method outperforms SGD
optimization method, as higher train and test accuracy is reached with Adam optimization (95%
and 85% respectively). It is particularly interesting to note that among architectures utilizing Adam
optimization method where none of the layers are frozen during training, we reliably receive better

Bddtiomd Activation Dropout Num Epoch Train Acc. Val Acc.

Hidden Layer

10 units	relu	0%	10	70%	69%
10 units	tanh	0%	10	73%	71%
10units	tanh	0%	20	81%	75%
10units	tanh	0%	30	91%	77%
100 units	tanh	20%	30	99%	80%
100 units	tanh	50%	30	99%	82%
100 units	tanh	70%	30	99%	80%

Table 4: Fully connected and epoch tuning

128 x 429 Spectrogram
2D Input Tensor

Legend

/ \
e ; S, y
) \ !
. ;o
SO i
Y %
satch y 100 Hidden Unit
il PostConvolution Fully Connected O 10 Unit Softmax
Convolution Normalization +) Tensor Layer with Dropout
Kernel Max Pooling

Figure 4: Final Novel Architecture

convergence in accuracy for our test set. The other interesting observation, is that for genre-detection,
training better CNN layers have more impact on the accuracy of the network than adding more RNN
layers the end of the architecture. Figure (3) and (2)supports this reasoning, as adding LSTM and
GRU layers does not outperform the case with training the Conv layers without adding RNN.

6 Future work

With the wide variety of musical data becoming available online, research tools such as the neural
network architecture developed in this project can serve more and more utility for both music
researchers and the music industry as listener tastes continue to evolve, serving functions such as
accurate categorization of metadata for music publishers, as well as preference matching for listeners
of streaming music services. Training and testing the models on more contemporary music would
better position such a tool for accurate analysis as new music continues to be released. Additionally,
given larger amounts of data, larger architectures would be ideal for exploring further increases
in accuracy. The project may also provide particularly useful information for transfer learning
applications, where original musical works can be reimagined in novel forms.

7 Contributions
e Yasaman Shirian: Labeled FMA adatset and provided new mix dataset of GTZAN and
FMA, fine-tuned the model with mixed dataset with Adam optimization method.

o Matt Jones: Developed novel model architecture, iterating through multiple versions and
providing analysis on it.

o Daniel Way: Fine-tuned the model using the GTZAN dataset and SGD optimization method.

References

[1] A.Jiménez and F. José. Music genre recognition with deep neural networks.

[2] K. Choi, G. Fazekas, and M. Sandler. Automatic tagging using deep convolutional neural
networks. arXiv:1606.00298, 2016.

[3] R. Ajoodha. Automatic genre classification. The university of Witwatersrand, School of Computer
Science, 2014.

[4] E. Benetos and C. Kotropoulos. A tensor-based approach for automatic music genre classification.
Proceeding of the European Signal Processing Conference, 2008.

[5] Dumitru Erhan Douglas Eck J. Bergstra, Norman Casagrande and Baldzs Kégl. Aggregate
features and adaboost for music classification. Machine learning, 2006.

[6] J. Cast, Ch. Schulze, and Ali Fauci. Music genre classification. 2014.
[7] H. Cohen and C. Lefebvre. Handbook of categorization in cognitive science. Elseveir, 2005.

[8] M. Ogihara T. Li and Qi Li. A comparative study on content-based music genre classification.
ACM SIGIR conference on Research and development in information retrieval, 2003.

[9] S. Oramas et al. Multimodal deep learning for music genre classification. Transactions of the
International Society for Music Information Retrieval, 1,2018.

