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Abstract

This project focuses on the problem of tracking the paths of individual vehicles
across multiple surveillance cameras despite significant variations in viewpoint,
scale, occlusion, illumination, and background. We frame this as a visual query
system: given an image of a vehicle, query a database of vehicle images and return
images that are of the same car. Existing approaches tend to have two models:
an object detection model and a separate embedding model. We experiment with
using just one object detection model, YOLOV3, for both tasks: we treat the
vector YOLOV3 used to decide bounding boxes as the visual embeddings for
the vehicle in that bounding box. Although less specialized embeddings should
decrease accuracy, using only one model should significantly decrease the amount
of memory and runtiem required to deploy a multi-camera tracking system, which
may be an acceptable accuracy-vs-footprint tradeoff. We found that a pretrained
YOLOV3 performs twice as good as random guessing and half as good as modern
results, suggesting that with further training on surveillance data, YOLOv3 alone
might be a promising approach.

1 Introduction

There are hundreds of millions of surveillance camera worldwide. By 2018, the Chinese government
alone has installed 200 million surveillance cameras (approximately 1 camera per 7 citizens)!.
For reference, in 2014, public and private organizations in the United States operated 40 million
surveillance cameras (1 camera per 8 citizens)?.

Some applications of this technology include monitoring traffic, optimizing logistics, tracking
fugitives, and following stolen cars. The privacy and ethical issues of these applications are worthy
of a report on their own. For now, we focus on the technical issues with these systems.

The biggest technical issue is resolution. Most computer vision datasets focus on images taken from
handheld cameras or smartphones. However, security cameras are often aloft and have a wide field of
view. The images tend to be grainy and the objects tend to be at odd angles. Additionally, there tends
to be a significant difference in viewpoint, scale, occlusion, illumination, and background between
different surveillance cameras.

"https://www.nytimes.com/2018/07/08/business/china-surveillance-technology.html
Zhttps://www.nkytribune.com/2017/04/keven-moore-surveillance-cameras-are-everywhere-providing-
protection-but-not-much-privacy/
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2 Related work

This problem is often called "vehicle re-identification". Most of this literature has not been reproduced.
The most cited dataset, CompCars (published in 2015), has been cited a total of 277 times, and papers
primarily published without code and often go months without citations.

What literature exists suggests three common ways of approaching this problem:

e Vehicle embeddings (like word2vec)
e Vehicle attributes (like license plate, make, model)

e Detection attributes (like where and when we detected the vehicle)

Most approaches focus on vehicle embeddings, which is what we chose to focus on. A recent paper
from NVIDIA demonstrates results comparable with state-ofthe-art using triplet loss [NVIDIA]. VR-
PROUD [2] claims state-of-the-art results using a CNN architecture for feature extraction followed by
an unsupervised technique that enables self-paced progressive learning in addition to incorporating
contextual information. Y. Lou et al. propose an end-to-end embedding adversarial learning network
(EALN) capable of generating samples localized in the embedding space, finding that using these
generated samples increases performance without requiring additional labeled data [EALN]. C. Wu et
al. trains a vehicle feature extractor in a multi-task approach on three existing vehicle datasets and fine-
tunes the feature extractor using adaptive feature learning techniques based on the space-time prior
[4]. Y. Zhou and L. Shao proposes a Viewpoint-aware Attentive Multi-view Inference (VAMI) model
that extracts the single-view feature for each input image and transform the features into a global
multi-view feature representation so that pairwise distance metric learning can be better optimized in
such a viewpoint-invariant feature space, claiming state-of-the-art results [VIEWPOINT-AWARE]

3 Dataset and Features

There are not many vehicle re-identification datasets, and most that exist are only available upon
request. Below is a list of all the three datasets we downloaded and a short description of each.

e PKU-Vehicle [6]. 10 million crops of vehicles without annotations, meant primarily to
serve as red herrings during queries to simulate real-world queries. Various locations
(e.g. highways, streets, intersections, etc.), weather conditions (e.g.,sunny, rainy, foggy),
illuminations (e.g., daytime and evening), shooting angles (e.g., front, side, rear) and
hundreds of vehicle brands.

e CompCars [7]. Web and surveillence camera images. The web portion contains 136,726
images capturing entire cars and 27,618 images capturing car parts, over 163 car makes
with 1,716 car models. The full car images are labeled with bounding boxes and viewpoints.
Each car model is labeled with five attributes, including maximum speed, displacement,
number of doors, number of seats, and type of car. The surveillance camera portion contains
50,000 car images captured in the front view.

e VeRi [8]. 50,000 images of 776 vehicles captured by 20 nearby cameras covering a 1 km?
area in 24 hours labeled with varied attributes, e.g. bounding box, types, colors, and brands,
license plates, spatiotemporal information. Each vehicle is captured by 2-18 cameras in
different viewpoints, illuminations, resolutions, and occlusions.

We focused on the VeRi dataset, as it was the only one that had images labeled by Vehicle ID. Each
vehicle was captured by multiple cameras. Each camera captured roughly 6 images per vehicle. Each
image was labeled with the vehicle ID, camera ID, vehicle color, and vehicle type (e.g. sedan or bus).

VeRi breaks the images into 37,778 training images, 11,579 testing images, and 1,678 query image.
During testing, you are intended to take a query image and retrieve at most N testing images, where
all returned images are supposed to have the same vehicle ID. Separating the training set into a
queryable set and query set is left to the researcher. Going by vehicle ID, there are no overlapping
vehicles in train and test/query.

We started with a YOLOV3 [9] pretrained on MS-COCO [10]. We intended to further train YOLOV3
on VeRi images. Unfortunately, after we received the data, we discovered that the original images
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Figure 1: VeRi image examples

were not included. VeRi images are just crops of vehicles. Example VeRi images are displayed in
Figure 1. Because we didn’t have the original frames and bounding boxes to train YOLOV3 on, we
couldn’t do any further training on this dataset, and did not do any preprocessing, normalization, or
data augmentation.

4 Methods

We used YOLOvV3 [9]. YOLOV3 is the current state-of-the-art model for real-time object detection.

YOLOV3 predicts 4 coordinates for each bounding box, t,, t,, ., t; using k-means dimension
clusters as anchor boxes. Training is performed with sum of squared error loss. YOLOV3 predicts an
objectness score for each bounding box using logistic regression and the class probabilities using
independent logistic classifiers. It uses binary cross-entropy loss for the class predictions.

YOLOV3 extracts features from 3 different scales using a concept similar to feature pyramid networks.
From the darknet-53 feature extraction backbone, YOLOv3 adds several convolutional layers, the
last of which predicts a 3-d tensor encoding bounding box, objectness, and class predictions. In
YOLOV3’s original COCO experiments, they predict 3 bounding boxes at each scale, so the tensor
isN N [3 (4 + 1+ 80)] for the 4 bounding box offsets, 1 objectness prediction, and 80 class
predictions.

For the second scale, YOLOV3 takes the feature map from the 2 previous layers and upsamples it
by 2x. It also concatenates in a feature map from earlier in the network, and then adds a few more
convolutional layers to process the combined feature map, and now predict a similar tensor at the
second scale. This process is repeated at the third scale.



It automatically identifies and draws rectangular bounding boxes around objects of interest at a rate
of roughly 15-20+ frames per second. YOLO networks divide the image into regions and predict
bounding boxes and probabilities for each region.

For a 416x416 input image, YOLOvV3 predicts 13x13x3 = 507 boxes for the first scale, 26x26x3 =
2028 boxes for the second scale, and 52x52x3 = 8112 boxes for the third scale, for a total of 10,647
boxes. Non-maxima suppression and IOU thresholds are then used to cut the number of boxes down
significantly, often to a few or a couple dozen per image.

YOLOV3 is the third generation of the YOLO architecture. It is implemented in the darknet [11] deep
learning framework, a C-based framework developed and occasionally maintained by the YOLO
creator for his personal deep learning research.

There are several alternative state-of-the-art object detection models, most noticeably SSD [12],
R-FCN [13], Faster-RCNN [14], and Mask-RCNN [15]. Some of these models are more accurate
than YOLOV3 or return more specific results. For example, Mask-RCNN labels each individual pixel
of each object ("instance segmentation") instead of drawing rough rectangular bounding boxes. This
type of output would let us crop the input image down to just the car, instead of the car plus some of
its surroundings, which would increase the accuracy of things like extracting the appearance vector.

However, for all of these alternatives models, the increased accuracy comes at the cost of slower speed
(often single-digit frames per second compared to YOLOv3’s 15-20+). For this paper, we focus on
evaluating the speed and accuracy tradeoff for YOLOVv3 for the problem of vehicle re-identification.

We based our model off of a PyTorch implementation of YOLOvV3 [16].

5 Experiments/Results/Discussion

We ran YOLOV3 (trained on MS-COCO) with a batch size of 52 on each of the 11,579 testing images
and 1,678 query images (after letterbox resizing them to 416x416). Most of the time, YOLOv3
detected exactly one object. Occasionally it detected multiple objects (in which case we chose the
bounding box with the highest confidence score) or no objects (in which case we removed the image).
We extract the length 255 vector YOLOV3 used to decide each bounding box and save this as an
embedding for that particular image. For each query image that has an embedding, we search for the
50 most similar test images using the cosine similarity metric. Each query image is also included in
the test image. Because the embedding for the images is exactly the same, this test image was always
returned as the most similar result. We ignore this result and focus on the 2nd-51st closest images.

The most common metric in re-identification tasks is Cumulative Matching Characteristic (CMC).
For a single query, a rank=50 query will return a vector of 50 numbers: O until the first image of that
ID appears and 1 thereafter. For example, if an image of the the same object appears in the 3rd slot,
the result would be [0, 0, 0, 1, 1...]. The CMC is this curve averaged over all queries (np.mean(res,
axis=0), resulting in a length-50 vector) and plotted.

We compare our results against (1) the results described in the 2016 VeRi paper and (2) a random
baseline, which returns N random images in the test set.

We found that in 691 out of 1678 cases, the YOLOvV3 approach returned at least one valid response,
compared to 409 positive responses for the random approach.

A visual inspection of the incorrect responses suggested at least 10% of the time, the returned response
was the same color as the query car. Cars of the same type were also more common.

6 Conclusion/Future Work

We found that YOLOV3 is at least twice as good as random chance, though half as good as modern
state-of-the-art-ish results. These were surprisingly promising results. YOLOv3 was trained only
on objection detection on COCO (328k images) (feature vector n=255), compared to the lowest-
performing result in the VeRi dataset, AlexNet’s, classification task on ImageNet 1000 (1.5m) (feature
vector n=4096). Further training YOLOv3 on surveillance data (e.g. CompCars) and on fine-grained
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Figure 2: VeRi 2016 results (left) and our YOLOv3 vs random baseline results (right) (axes not the
same scale!)

object detection (to e.g. detect different vehicle types) would likely significantly improve the quality
of the results. Additionally, results may be better with more accurate but slower object detection or
instance segmentation models like Faster-RCNN, Mask-RCNN, or the newly released RetinaMask
[17]. Further work involves experimenting with different architectures, training on additional datasets,
and evaluating using additional quantitative (like mAP and hit rate by color, vehicle type) and
qualitative metrics (like easier-to-digest top 10 visualizations).
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