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Abstract

Suction-based end effectors are becoming
a common tool for automated robots to
lift and carry objects. However, a com-
mon challenge with these systems is se-
lecting optimal suction grasp locations.
Most current systems use a multi-step pro-
cess to perform this analysis. In this pa-
per, we build on previous work on RGB-
D image segmentation to propose a new
model for suction location based on RGB-
D images. The model we propose is
an FCN composed of two encoders, one
which takes as input RGB images and one
which takes 3-dimensional representations
of depth images, and a single decoder net-
work which takes the average of the en-
coder network’s outputs as input to pro-
duce an output segmentation. We propose
a new method called "mid-fusion" to en-
able skip-connections which, to the best of
our knowledge, hasn’t been tried in dual-
network RGB-D CNNE.

1 Introduction

In order for robots to robustly perform useful tasks in the
real-world — from stocking grocery shelves to assembling
complex machinery — they must be able to interact with var-
ied previously-unseen objects. A crucial and necessary first
component of such tasks is for robots to automatically detect
the best places to grab these items. In this paper, we worked
with a synthetic dataset provided by Nimble.ai created to
train robots that use suction grasping. The input data consists
of randomized RGB-D images of objects labeled with their
optimal suction location. After training, our neural network
model then predicts optimal suction grasp labels on such
unseen images.

Due to a lack of accessible pre-trained models on related
RGB-D tasks, we did transfer learning using weights from
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the VGG-16 network trained on the ImageNet challenge.
Since such weights, however, are built to work with three
channel, rather than four channel images, we used an ar-
chitecture that takes in the depth and RGB components of
our images separately. We pre-process our depth data using
depth-jet encoding to spread out its information over three
layers and then run the ’encoding’ portion of our model on
it in parallel with the RGB data. We then combine the infor-
mation gleaned from both streams, and then finally ’decode’
the data using a Fully Convolutional Network architecture to
output labels that are the same size as our original images.

2 Related work

DexNet 3.0 by Mahler et al (1), was a highly influential paper
on suction grasping which created the first major dataset on
the subject. This model works by creating a point cloud on an
object based on the depth data, and then individually evaluat-
ing each point to determine the quality of the grasp. Mahler
et al. introduced the idea of a Grasp Quality CNN (GQ-CNN)
to evaluate the grasp quality of a single point. The model
would return in the end a map of the quality of every point
in the point cloud to determine what a good suction space is.
While this approach delivered good results, we were able to
achieve this task in an entirely end-to-end model.

As part of our literature review, we also looked at other tasks
using RGB-D images. Wang et al. (3) developed a novel ap-
proach to using depth-data which uses the depth dimension
to create weights for pixel importance in convolution and
pooling layers. This approach worked well in a segmentation
task and we thought it could also be used successfully in our
problem. The proposed approach adds an extra weighting
term to the convolution and avg. pooling operation based on
the difference in depth between a point and the center of the
kernel (at that step). This adds essential geometric informa-
tion to the operations that isn’t contained in RGB data. An
attractive element of this approach is that it doesn’t require
extra parameters to train on depth data, which most other
approaches do. However, we had difficulties working with
their repository and in the end, had to abandon this approach.
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To the best of our knowledge, Gupta et al. (7) was the first to
propose using two separate CNNs, one of which was trained
on RGB data and another on depth data. They then took
the concatenation of this output as input to an SVM for ob-
ject detection. Based on these results, they train an RCNN
(Regions with CNN features) as described in Girshick et
al. (8) on a semantic segmentation task. Gupta also intro-
duced the concept of turning depth data into a 3-dimensional
representation which they call HHA. This enable CNNs to
be pre-trained on large datasets of RGB images like Ima-
geNet and then fine-tuned with the task specific data. Gupta
found that knowledge learned by the networks on RGB data
transferred well to interpreting HHA images. This paper
introduced key innovations like using 3-dimensional depth
representations and training separate networks for depth and
RGB data. However, the model we develop is different in
that it uses parallel FCNs instead of RCNNs to develop an
end-to-end model for image segmentation, skipping the ob-
ject detection step. Furthermore, instead of using the more
complex HHA encoding, we achieved good results with the
simpler jet encoding.

Based on the Gupta et al. architecture, Eitel et al. (2) cre-
ated a network for object detection based on RGB-D images.
They train two separate CNNs, one for depth encoded in
a 3D format (both Jet and HHA encodings are used, with
Jet achieving the best results) and another for RGB images.
The output of these is concatenated and then fed into a fully
connected neural network to create an output distribution.
While not an image segmentation task, this paper inspired
our approach to merge the output of the two CNNs before
passing them through a network which produces the output.
Unlike Eitel et al., we don’t concatenate the output of the two
networks, but instead average it, a step we call "mid-fusion",
before passing it through our decoder network. This moti-
vated our double encoder with one joint decoder approach.

The final paper we looked at was Long and Shelhamer et al.
(9), which also looks at the task of semantic segmentation.
Long and et al. create a similar network to ours, and intro-
duce FCNs intialized with common CNN weights like VGG
and AlexNet for RGB-D image segmentation, which are then
fine-tuned on the target task. Based on Gupta et al., they also
use a parallel network structure and the HHA representation
of depth images. However, unlike our model, they perform
late-fusion, training the two FCNss in parallel end-to-end and
then summing the predictions of both networks at the end.
The approach we take is simpler, using two encoder CNNs
pretrained on VGG, like Long and Shelhammer et al., but
then one single decoder network to upsample the image. The
key step here is mid-fusion, which is the averaging of the
skip connections from each network, which are then passed
on to one decoder network that up samples these intermediate
outputs to produce an output of the same size as the input
image.

3 Dataset and Features

Due to the difficulty in collecting and labelling a large dataset
of images for this task, our project partner, nimble.ai, pro-
vided us 480 randomly simulated examples. Each example

consists of an rgb image, a depth image, and a label im-
age, which contains the target suction spots. The images are
generated by dropping randomly selected 3D objects on a
simulated tray using a physics simulator. Each of the objects
has labels for correct suction spots. Those per-object labels
are used to create the example label image.

Research on using generated images has shown promising
results, with James et al attaining 70% zero-shot grasp suc-
cess on unseen objects simply training on such data, and later
attaining 91% accuracy after fine tuning on a batch of only
5,000 real-world grasps (6).
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Figure 1: Left: RGB image Center: Depth image Right:
Correct output

In Figure 1 above, we present a sample from our dataset. The
top left and right images correspond to the RGB and depth
input to our system, respectively. On the bottom lies the
correct output, which is the coordinates of surfaces with high
potential for suction grasping (the coordinates are labeled in
green).

Figure 2: Correct output overlayed on RGB image

3.1 Processing

The original images are all of RGB type and are of shape
800x600 pixels. We reshape all the images using Pillow to
224x224 pixels to make training faster. This specific shape
was chosen because it’s the one VGG originally takes in. We
then strip the RGB images of the alpha dimension, and take
only the first dimension from the depth and label images. We
divide the RGB images by 255 to restrict every pixel between
0 and 1. We also preprocess the label so that every pixel is
either 0 (not a good suction point) or 1 (good suction point).

For our depth images, studies (2) (7) have shown that coloriz-
ing them can provided a significant performance boost. That
is, spreading the depth information over three RGB channels
performs much better than encoding the depth as greyscale.
Given that the VGG network from which we get our pre-
trained weights is designed for RGB images, the encodings
better allow our network to learn useful features. We used
the Depth jet encoding which has been shown to outperform
more complex and computationally costly methods like HHA
(2). The Jet encoding maps every pixel in the depth image
to a color value. Nearer pixels (smaller depth values) map to
red, over green, all the way to further pixels which map to



green. Finally, we divide by 255 to bound each pixel’s value
between 0 and 1.

o

Figure 3: Example of processed, jet-encoded depth image

4 Methods

4.1 SalNet

Our first approach originates from viewing the problem as an
image saliency detection task. In image saliency detection a
model seeks to output a saliency map that highlights the most
important parts of an input image. Importance is determined
in different ways ranging from pixel uniqueness to probabil-
ity of visual human attention. This later probability metric is
an explored Deep Learning problem that closely matches our
input-output pairs, so we implement the two neural models
from the seminal work in the field by Pan, McGuinness et al

(6).

The first SalNet model we implement is a shallow ConvNet
inspired by the AlexNet architecture for image classification
but with 3 convolutional and maxpool layers rather than 5.
The output is then passed through 2 fully-connected layers
and the sigmoid function to arrive at pixel-wise probabilities.
Although this architecture is rather shallow in layers, due to
the fully connected layers the final parameter count is about
64 million. In addition because this model is trained entirely
from scratch we found it difficult to train.

The second SalNet model we implement is the deeper Con-
vNet with pretrained VGG layers. The architecture consists
of three VGG pretrained convolutional layers mixed with
maxpool layers followed by 5 convolutional layers of various
filter number and size and finally passed through a single
deconvolutional layer plus sigmoid to arrive at a saliency
map of the original image size. Although this model is par-
tially pretrained and contains fewer parameters at about 26
million we also found it unwieldy to train despite extensive
parameter and architecture search.

Unfortunately, neither of the two SalNet approaches pro-
duced significant learnings. After an extensive hyperparame-
ter and architecture search, which we discuss in Experiments,
we decided to reasses our problem and find alternative solu-
tions.

4.2 FCN-8s

After reexamining the literature, we saw more similarities
with our task and image segmentation. Image segmentation is
the task of separating out an input image into parts that belong

to different objects or classes. Deep Learning segmentation is
similar to saliency in that the output is a pixelwise prediction
probability, but different in that the output is simply a per
pixel classification rather than a mix between regression and
binary classification. We implement a Fully Convolutional
Network approach to image segmentation described in Long
and Shelhamer et al (9)

In particular, we implement the VGG-FCN-8s model de-
scribed in Long and Shelhamer et al (9) VGG-FCN-8s, here-
inafter referred to as FCN-8s, takes the pre-trained layers
from VGG, removes the classification layer and replaces the
fully connected layers with convolutional layers. Since the
network lacks any densely connected layers it has the advan-
tage of working with any sized inputs without needing to be
retrained. The first 7 trainable layers are taken from VGG
after which a single 1x1 convolution is applied instead of a
fully-connected layer. If this intermediate output is though
of as an encoding of the information in the original image
then the following layers constitute the decoder part of the
network. The encoding is passed through several upsampling
layers using learnable transpose convolutional layers. At
each step of upsampling the output is summed with an earlier
output from the VGG layers creating a skip connection.

We want to explain in more detail the deconvolutional layers
as they are key operations in our network. A deconvolutional
layer simply performs the opposite of a convolutional opera-
tion by both upsampling the image and passing a learnable
filter of parameters over it. If one thinks of the convolutional
operation as a matrix product involving a special matrix
created from unrolling the filter then the deconvolution op-
eration can be thought of as a matrix product between the
transpose of a filter matrix and the flattened deconvolutional
layer input.

We also want to highlight the importance of the skip connec-
tions in FCN-8s as they are the key difference between our
successful models and the unsuccessful SalNet models. Gen-
erally, adding skip connections to neural networks allows for
gradient information to reach deeper layers in a neural net-
work by providing a sort of "highway" for the gradient to pass
along and bypass intermediate layers. In addition, during the
forward step layers can just default to the identity function
by setting their learned parameters to zero. These advantages
allow for training of much deeper networks such as ResNet-
101. While these advantages definitely contributed to our
FCN-8s’s ability to train better, the skip connections in this
model also allows the network to combine information from
earlier finer layers with the deeper coarse layers to produce
more rich segmentations during upsampling. These earlier
layers contain information about edges and edge combina-
tions that especially in our case should intuitively improve
our model’s ability to detect suction locations by providing
structural information of the objects.

4.3 RGB-D FCN

Our RGB-D FCN was based based on our FCN-8 architec-
ture but uses two encoders and one decoder. One encoder
takes RGB images as input and the other takes Jet encodings
of depth images. Each of the encoders has the same archi-



tecture as in the FCN-8s network and is initialized using the
VGG-16 network’s weights. After initializing each of the
decoders with the VGG weights, we use the output of the
3rd, 4th and 7th layers for each network. We average each
corresponding layer output from each of the two networks
to create one unified representation of the 3rd, 4th and 7th
layers. We then pass these as input to the decoder.

The decoder is the same as the one for the FCN-8 network,
but using the averaged skip-connections. The output of the
network for each pixel is passed through a sigmoid function,
We trained using binary cross entropy loss as our loss func-
tion and used the Adam algorithm. We used the default 0.9
as beta 1 and 0.999 as beta 2. We also used a learning rate of
0.0001.

The model is constructed such that both encoders and the
decoder can be trained in parallel, end-to-end.

Architecture
RGB-D FCN
RGB Encoder Depth Encoder
input (224 x 224 RGB image) |input (224 x 224 Jet image)
conv3-64 conv3-64
conv3-64 conv3-64 Layer 1
maxpool = layer 1 output
conv3-128 conv3-128
conv3-128 conv3-128 Layer 2
maxpool = layer 2 output
conv3-256 conv3-256
conv3-256 conv3-256
Layer 3
conv3-256 conv3-256
maxpool = layer 3 output
conv3-512 conv3-512
conv3-512 conv3-512 Layer 4
conv3-512 conv3-512
maxpool = layer 4 output
conv3-512 conv3-512
conv3-512 conv3-512
Layer 5
conv3-512 conv3-512
maxpool = layer 5 output
conv1-4096 conv1-4096 Layer 6
Layer 7
convl-3 Layer 8
deconv4-512 Layer 9
Add avg layer 4 output Skip connection
deconv4-256 Layer 10
Add avg layer 3 ouptut Skip connection
deconv16-4 Layer 11

4.4 Loss Functions

We used two loss functions during our project, mean-squared-
error and binary cross entropy.

Mean-squared-error is defined for a single image by the fol-
lowing formula:
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NZ(Yi—Yi)Q
=1

where Y; is the probability of pixel i being a good suction
spot outputted by the network and Y; is the correct label,
which is either O or 1. The difference between the network
output and the correct label is calculated at every pixel and
then squared. The results of these operations are then aver-

aged over all IV pixels in the image. This is done for every
image and defines the loss.

Binary cross entropy is defined for a single example as fol-
lows:

N
Z —¥; log(ﬁ) —(1-Y;)log(1 -Y)

where Y; is the probability predicted by the network of pixel
1 being a good suction spot, and Y; being the ground truth.
This is calculated across all NV pixels in the image. Note that
because the output of the network is passed through a sig-

moid function, ¥; will always be bounded by 0 and 1. Cross
entropy loss is the standard loss used for classification tasks,
which we do on a per pixel basis.

5 Experiments/Results/Discussion

5.1 Experiments

For all models weights were initialized with Xavier initializa-
tion and biases with 0. For standardization every pixel input
was divided by 255. and all ground truth label pixels were
transformed to either O or 1. We ran the shallow SalNet with
the authors’ hyperparameter choices of 0.03 initially for the
learning rate and decreased over 1,000 epochs to le-4. We
used Stochastic Gradient Descent with Nesterov momentum.
Using binary cross entropy loss we confirmed their findings
of vanishing gradients and saw that our model failed to lower
training loss even on a single example. So, we switched to us-
ing the MSE / Euclidean loss as recommended by the authors.
Although this led to our initial training loss decreasing, we
found that the training loss quickly plateaued and the output
strangely converged to vertical lines. Faced with this high
bias problem, we extensively searched for hyperparameters
including learning rate, weight decay, fully connected layer
sizes, number of filters, and learning rate decay but we were
not able to overcome the plateau.

We then transitioned to the deeper SalNet model in the hopes
of achieving lower bias with a larger network. We also ini-
tially ran the model with the authors’ hyperparameters of
0.1/(224 x 224 ~ le — 7 and halved it every 100 iterations.
We used standard L2 weight regularization and froze the
VGG weights. Unfortunately, this model also encountered
a plateau and failed to lower bias. We experimented with
higher and lower hyperparameter values as well as differ-
ent regularization weights. We used a small batch size of 2
to improve stochasticity and used MSE / Euclidean loss to
combat vanishing gradients as well as gradient clipping for
exploding gradients. Despite these searches our model at best
converged to a 0.5 output for all pixels in the input image.
We theorized that either the model did not contain enough
representational power in its structure for our task, or we
simply did not run it for enough epochs to see a breakthrough
in training. Either way, we pivoted to FCN-8s because of its
incredible success.

We first ran two FCN-8s models separately on rgb images
and jet-encoding depth images. We set our batch size to 4,
dropout probability of 0.5, and performed a random search



over possible learning rates. We settled on Se-5 as the learn-
ing rate for both of them. We experimented with decreasing
the learning rate so that every couple of epochs it would be
halved, but found that this only slowed initial training. Our
minibatch size was set to balance between not being so high
that we ran into out of memory issues on the AWS GPU
instances and not being so low that training was slow.

We only had enough time to run RGB-D FCN with the same
hyperparameters. We trained all FCN models on artificially
augmented datasets to increase our overall dataset size. We
incorporated image mirroring, random cropping, shearing,
and rotation.

5.2 Results
Models | Intersection over Union
Shallow SalNet 0.0
Deep SalNet 0.0
RGB FCN-8s 0.15
Depth FCN-8s 0.12
RGB-D FCN-8s 0.13

Table 1: Final results of different models

Figure 4: Top left: RGB input. Top right: Depth input.
Bottom Left: Our predictions. Bottom Right: Ground truth.

5.3 Discussion

We were pretty impressed with our overall results. The best
outputs capture the general location of the ground truth la-
bels pretty well. We found that one limitation of our data
is that points are sometimes not defined for objects which
probably should have them. This led to our model outputting
seemingly correct predictions to the naked eye but contradic-
tory with our ground truth labels. Thus lowering our overall
Intersection over Union.

We were surprised to see poorer results from the RGB-D
FCN-8s, but we suspect this may be because we did not pro-
vide it enough time to fully train. In addition, we found that

after a certain point the learning rate may have been too high.
We encountered variance issues that we tried to combat by
using dropout as well as data augmentation.

We chose to use Intersection over Union as our main metric
because it captures our end goal very well. IoU is defined as
the amount of area that two classifications (in our case the
ground truth suction labels and our predicted suction labels)
intersect divided by the union of their areas.

6 Conclusion/Future Work

In this paper, we created a single end-to-end system to find
optimal suction points based on RGB-D data. We propose a
new model for RGB-D segmentation which we train and test
on a generated dataset of RGB-D images of random objects.
Our final model is able to create labels on

Due to time constraints, there were items of work that we
were unable to explore. The first is running and fine-tunning
our current model with real RGB-D images. We believe that
we can get better results on generated images with more train-
ing time, but if this model is to be used in production, further
training on real world conditions is necessary. We would also
like to experiment with more methods of mid-fusion than
simple averaging to hopefully leverage more information
from each of the data sources. Specifically, we’d like to ex-
periment with methods that include learnable parameters in
merging the outputs from the two encoder networks. Finally,
we’d experiment with manual learning rate decay to counter
instances where training began to slow down or diverge.

7 Github Repository

https://github.com/N-Demir/RobotSuctionAl

8 Contributions

Nikita: Pre-processing, SalNet’s, RGB FCN-8s, Depth FCN-
8s, Research. Jose: Depth-Aware CNN (didn’t work), Prepro-
cessing, RGB-D FCN, Metrics, RGB-D image segmentation
research. Mauricio: Pre-processing, Jet encoding, depth
FCN-8, Data augmentation, research

Thank you to Nimble.ai for providing the dataset
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