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Abstract

In this work, we explore the possibility and challenges of applying Generative
Adversarial Networks (GAN) to the task of generating tweets with a specific
language style to simulate tweets from a real Twitter account. We use President
Donald Trump’s Tweets as a case study to train and evaluate whether a GAN-based
text generation model can learn the language styles and generate realistic tweets.
We also compare the GAN model with a basic RNN model as the baseline in terms
of training difficulty and text generation quality. The preliminary results show that
it is harder to train a GAN model than the baseline RNN model. The problems
of training a GAN model, such as mode collapse, are observed. With fine-tuned
hyperparameters, the generated texts from a GAN model are slightly better than the
baseline RNN model. However, current results indicate that more efforts are needed
on choosing better hyperparameters, finding better cost functions and designing
better training strategy when applying GAN to text generation.

1 Introduction

Text generation is an active research topic in Deep Learning and Natural Language Processing
(NLP) [12]. It can be applied to many tasks including machine translation, article summarization,
image captioning, questions and answering, etc. Generally, the goal of text generation is to generate
natural language texts that resemble real-world training texts in similar linguistic styles and contexts.
Various generative models have been studied in this domain. Recurrent Neural Networks (RNN)
is commonly used in text generation [13, 7]. By feeding words one by one in a time series, a
trained RNN can recursively predict the next most likely word. Sequence (and more complicated
Variational [1]) autoencoders are utilized to capture high-level features of a complete sentence for
better text generation. However, as pointed out by Bowman et al. [1], although cherry-picked results
from previous work look promising, it is often found that the generated texts are grammatically or
semantically incorrect. As researchers continuously propose new models and techniques, the text
generation problem deserves more exploration and may benefit from new advances.

In this work, we investigate whether Generative Adversarial Networks (GAN) [6] can be applied or
built on top of existing models to further improve the quality of text generation, in terms of mimicking
more similar linguistic styles and achieving better grammatical correctness. Previously, GAN has
shown great promise in generating realistic images [3]. With two adversaries, a generator and a
discriminator, playing against each other, GAN pushes both sides to the possibly optimal stage so that
the generator can generate realistic but fake samples that the discriminator cannot distinguish from
the real training samples. One previous challenge of applying GAN to discrete sequence such as text
or music, is that due to the discrete tokens, it is difficult to propagate the gradient updates from the
discriminator to the generator. Researchers proposed to use Reinforcement Learning [18] to bypass
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the differential problem by using policy gradient updates (e.g., SeqGAN [21], MaskGAN [5]). Yet,
other challenges in GAN such as mode collapse, non-convergence and unbalance between generator
and discriminator may still cause problems and require more investigation.

As a case study, we explore a specific text generation task, using GAN to generate Trump-style
tweets. As President Donald Trump is famous for using Twitter to promote political opinions and
policy with a distinctive language style, the text corpus of Trump’s tweets [19] becomes a valuable
dataset for the NLP research, since it has a considerable data amount, 140 (or 280) length limits, and
relatively simple and political-focused semantics. Previous CS230 project has explored using basic
Recurrent Neural Network (RNN) or LSTM to generate “Presidential”’-style tweets [17]. We take a
step further to investigate if GAN can be applied as a new learning model to this problem and discuss
new challenges we encounter during the model training.

After an one and a half month work and experiment, our preliminary results show that compared to a
basic RNN model, it is practically harder to train a GAN model. We have tried and revised a few
open source implementations of GAN-based models. Several typical issues in a GAN training are
observed, including mode collapse, vanish gradient and unbalance. In other rounds with previously
fine-tuned hyperparameters, we observe slightly better text generation of GAN models than basic
RNN model, in terms of grammar and semantics. However, current results indicate that given the
same training dataset, GAN models do not exceed basic RNN models, specially given higher training
difficulty than basic models. This indicates that more efforts on GAN models are needed to further
refine the hyperparameters, cost functions and training strategy, to truly utilize the potentials of GAN
models. In the following sections, we will explain the details of dataset, baseline RNN and GAN
models, the hyperparameters we choose and the text generation result.

2 Dataset

We use a dataset of 10-year tweets from @realDonaldTrump (excluding retweets) from 01/01/2009
to 02/20/2019, collected by [19]. In total, there are 14,686 original tweets published by @realDon-
aldTrump. We sanitize the dataset by removing http URL links, unifying single/double quotes from
Unicode to ASCII. Currently, we keep @ mentions and # hashtags there as these are popular tokens
in tweets, differentiated from ordinary text corpus. We hope the model can learn how to use these
tokens in the text context to generate more realistic tweets. The dataset is preprocessed based on
word level and an embedding is trained to include special tokens of names and hashtags.

Given the size of the above dataset, one concern is that it might not be large enough and may cause
overfitting problem. Other datasets can be considered include general tweets from various twitter
accounts (to pretrain general tweet styles and format), Trump’s speech transcript [4] (to pretrain or
fine-tune the embedding and RNN weights of Trump’s language style). However, given the time
constraint, currently we only use the above 14,686 tweets as the dataset for training and comparing
both baseline RNN models and GAN models.

3 Baseline RNN Model

The baseline model! is a plain 3-layer LSTM network. As shown in Figure 1, the input is a batch of
sentences of maximum length 15 word-level tokens, fed into a 100-dimension embedding layer, then
followed with three 128-unit LSTM layers, and finally fully connected with softmax to predict the
next probable token. RMSprop is used to minimize the categorical cross entropy loss.

After trained with 20 epochs, Figure 2 shows the loss and accuracy of the training and validation.
After Epoch 3, the validation curve deviates from the training curve, indicating a possibly overfitting
to the training set. However, since we are training a generative model, the categorical cross entropy, or
negative log likelihood (NLL) is just one metric of the performance of a generative model. Especially
in text generation, a temperature is typically used to adjust the diversity or novelty of the generated
token. As pointed out in [21],in addition to NLL, a human study can be used as an oracle to judge the
quality of generated text.

As an example, Listing 1 shows the top 3 generated Trump-style tweets, based on prediction softmax
probability with three different temperature settings after 20 epochs training. It is surprising to see
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Layer (type) Output Shape Param #
input (InputLayer) (None, 15) 0
embedding (Embedding) (None, 15, 100) 1000200
rnn_1 (CuDNNLSTM) (None, 15, 128) 117760
rnn_2 (CuDNNLSTM) (None, 15, 128) 132096
rnn_3 (CuDNNLSTM) (None, 128) 132096
output (Dense) (None, 10002) 1290258

Total params: 2,672,410
Trainable params: 2,672,410
Non-trainable params: 0

Figure 1: 3-layer LSTM baseline model
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Figure 2: Baseline Model Loss and Accuracy

that just a plain 3-layer network can already pick up quite good Trump-style tweet language. Note
that there is no pre-training. The network is trained from scratch for both embedding and LSTM
weights. One reason of this result is that the training dataset does provide short and repetitive patterns
for the model to capture, which is indeed Trump’s tweet style, since the President often talks about
certain political subjects repeatedly (e.g., Democrats, Hillary, etc.) and keeps posting similar tweets
(e.g., there are more than 100 tweets of "i will be interviewed on ..." in the dataset). This shows that
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the dataset is not diversified enough, which is more likely to cause overfitting.
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unbelievable crowd from brussels . hope he wins for ok in the middle east and jobs in that
danger . everybody will be announcing @foxnews there will get but strong people . give
dana and being gone for her problems and we will vote !

word took major two years to trump ' s old commander and have been more up . it was out of
strong as no reporting . so dishonest !

Listing 1: Baseline model generated tweets after 20 epochs training (Not cherry picked).

4 GAN Model

Generative Adversarial Networks for text generation is still an active topic in NLP research, due
to the difficulty of passing gradients to the generator given discrete tokens. Different architectures
and approaches have been proposed recently, including using the Gumbel Softmax trick [11], MLE
pre-training with reinforcement learning, such as SeqGAN [21, 2, 10, 15]. Without pre-training,
it becomes even more difficult and needs additional technique to help train GAN, such as using
curriculum learning [14] or Wasserstein GAN[8]. In the following subsections, we will describe a
few aforementioned work we have tried and revised.

4.1 SeqGAN Keras Implementation

SeqGAN [21] treats the text generation as a decision making process, using already generated tokens
as the current state to determine the next token to be generated. Then the discriminator’s classification
probability is used as a reward to train the generator via policy gradient. For the purpose of fast
prototyping, we tried one Keras-based SeqGAN implementation” [20] by designing the generator
to be the same as the baseline RNN model (the original paper used just one layer LSTM), and the
discriminator to also be the same except replacing the baseline RNN’s softmax with sigmoid to
classify real or generated texts. We use the following cost function with Adam to minimize it (We
negate the original cost function in the SeqGAN paper to change the optimization from maximize to
minimize).
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Due to space constraint, please refer [21] for more detailed definitions and annotations. The generator
is pre-trained with 20 epochs using the Trump tweets dataset. And the discriminator is pre-trained
with one epoch. Then the whole model is trained with 20 epochs. In each epoch, we choose two sets
of hyperparameters, one is that the generator is trained 5 times and then the discriminator is trained
once. The other is both the generator and the discriminator are trained once.

4.2 Mode Collapse

Unfortunately, during training, the above implementation and hyperparameters quickly raise an issue
that seems to be mode collapse as shown in Listing 2. Mode collapse [16] means the generated
tokens are collapsed to one or a few tokens, in this case, "great", which is one of the most populuar
token in the Trump tweet dataset. However, at this stage, this is not fully understood and still under
investigation.

<BOS> the the new office . congress are a great great great great great great great
<BOS> . i will be a great great great great great great great great great great
<BOS> . i will be a great great great again ! <EOS> <PAD> <PAD> <PAD> <PAD>

Listing 2: Possible mode collapse issue appears during SeqGAN Keras training

4.3 Texygen Implementation

As GAN requires careful design and implementation, to avoid potential implementation or compati-
bility issues and isolate different issues for easy analysis (i.e. determine whether the training difficulty
is caused by dataset input or implementation bugs or wrong cost functions), we also trained and
evaluated our tweet generation task based on different GAN implementations with already fine-tuned
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Figure 3: Validation NLL Losses of Three GAN models using the same Trump Tweets training set

hyperparameters for cross reference and comparison. One framework is called Texygen [22], which
provides several GAN-based text generation implementations?.

Here, we mainly focus on three GAN-based text generation models implemented in Texygen: Seq-
GAN [21], MaliGAN [2] and LeakGAN [9]. Apart from the aforementioned SeqGAN, MaliGAN
improves SeqGAN by stablizing the training and mitigating the gradient saturating problem. Leak-
GAN is a further improvement that allows the discriminator to leak its own high-level extracted
features to the generator to further help the guidance of the next token to be generated.

Figure 3 shows the validation NLL of the three models. We can see that both SeqGAN and MaliGAN
start overfitting after 75 epochs, while LeakGAN can achieve lower NLL with some oscillation. Due
to the time limit, currently only the overall losses are analyzed here. More detailed analysis and
explanation on the losses with different hyperparameter settings are needed in the future work.

In addition, to further evaluate the quality of the generated tweets, we manually go through 100
tweets generated by each trained model respectively, assuming human as the oracle to judge how
many of them are grammatically correct and furthermore, semantically making sense. Table 1 shows
the number of generated tweets by each model. These tweets are manually checked and classified into
four categories in terms of language quality. SeqGAN and MaliGAN are at the same level. It is still
difficult for them to generate grammar-correct texts, let alone semantically correct ones. LeakGAN is
much better compared to the previous two. Around 80 out of 100 tweets have at least partially correct
grammar. There are even 20 tweets that look quite realistic. It also took much longer time to train
LeakGAN than the other two.

Table 1: Number of generated tweets in different qualities by three GAN models

Make Grammar Grammar Make sense
Models . .
no sense | partially correct | mostly correct | semantically
SeqGAN 35 46 12 7
MaliGAN 44 32 16 8
LeakGAN 18 32 30 20

5 Conclusion & Future Work

In this work, we explore applying Generative Adversarial Networks to generate tweets, using Trump
Tweets as the training set. The results show that it is more difficult to train a GAN model than a basic
RNN model. We have observed issues like mode collapse. We also tried fine-tuned GAN models and
found different GANSs have different performance in terms of text generation quality. In the future
work, more efforts are needed to address training difficulty and design better cost functions. Larger
dataset is also needed to further improve the diversity of the generated text and reduce the overfitting
issue. Please refer to the github links for more details.

*https://github.com/wangruowen/Texygen
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