Deep Fake Detector: Using ML techniques to
Distinguish Real Images from Fake

Jervis Muindi Raj Prateek Kosaraju Yash Lundia
Department of Computer Science Department of MS&E Department of MS&E
Stanford University Stanford University Stanford University
jmuindi@stanford.edu rprateek@stanford.edu ylundia@stanford.edu
Abstract

Fake and manipulated images have become extremely prevalent in recent years and
have been credited with deceiving even the most informed. Spreading news and
images has becoming so easy in the present times that a fake/manipulated image
can be spread out to millions in the blink of an eye. This makes it incredibly easy
for manipulated images to spread fake news and misinformation. This inspired us
to develop a fake image detector using deep neural network techniques. We trained
models using numerous CNN architectures and chose the most promising architec-
ture. Using hyperparameter tuning, we arrived at a ResNet model that achieved
94% accuracy, 92% precision, and 93% recall when detecting fake images.

1 Introduction

With the emergence of social media, people around the globe are connected more than ever. They
can share photos, videos and messages to anyone in the world in a matter of seconds. Given all
the positive aspects of social media, unfortunately social media today, is also used to spread false
news through fake or manipulated images. In current times, there has been a great increase in the
proliferation of fake images on social media as well as other mediums. Most of these fake images
are indistinguishable from real content to the unsuspicious reader. Apart from misinformation,
manipulated images also aid document fraud. The spread of manipulated images is therefore a very
serious issue. We aim to develop a fake image detector using convolutional neural networks that
accurately detects the manipulated images and thus helps make people more informed about the
authenticity of the images. The input to our algorithm is an image. We then use a convolutional
neural network to output the predicted authenticity (authentic/fake) of the image. The complete code
base for this project is also available for reference[14].

2 Related work

The proliferation of fake images has inspired increase in research to find ways to accurately detect
fake images and thus curb its spread. Numerous approaches have been used in the literature to
devise an accurate fake image detector. Huaxiao Mo, Bolin Chen and Weiqi Luo [1] developed a
Convolutional Neural Network to identify Fake Faces generated by GANs. Their approach had a
99.4% accuracy. We found their approach of developing their CNN where they experimented with
numerous architectures and finally achieve a model which had high accuracy interesting. Dong-Hyun
Kim and Hae-Yeoun Lee [2] also used Convolutional Neural Networks to detect Image Manipulation
and achieved a 95% accuracy. Peng Zhou, Xintong Han, Vlad I. Morariu and Larry S. Davis [8]

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



proposed a two-stream Faster R-CNN network and trained it end-to-end to detect the tampered
regions in a manipulated image.

Furthermore, Minyoung Huh, Andrew Liu, Andrew Owens and Alexei Efros [7] proposed a model that
learns to detect visual manipulations from unlabeled data through self-supervision. They compared
three image processing techniques namely CFA (Color Filter Array), JPEG DCT and NOI (Noise
Variance).

On the same dataset that our work is based on, Wei Wang, Jing Dong and Tieniu Tan [3][6] developed
an image splicing detection method based on gray level co-occurrence matrix (GLCM) of thresholded
edge image of image chroma. They utilized SVMs (Support Vector Machines) as a classification
algorithm and used GCLMs of edge images as features in their approach. They were able to achieve
96% accuracy on the CASIA v2 dataset, albeit with considerable fearture engineering.

However, based on the literature available, we noticed that popular CNN architectures like Alexnet,
Resnet, Densenet, Inceptionnet and VGG16 have not been used to implement fake image detectors
yet.

3 Dataset and Features

We have used the CASIA v2 dataset[9] which has 7200 real images and 5331 altered (manipulated)
images. Each altered image is either a single authentic image modified using professional image
editing tools, or a combination of two authentic images.

We used a 80-10-10 split for the training, dev and test set respectively. Therefore, our training set had
10024 examples, while dev and test set had 1253 and 1254 examples respectively.

We preprocessed all images and resized them to a size that the different architectures we experimented
with accept, to make subsequent training and evaluation runs faster and easier. Therefore the
resolution of the input images depends on the CNN architecture that we used. Given below are the
input resolutions we used with respect to various CNN architectures:

e Inception-net: 299 x e Densenet: 224 x 224 o VGGI16: 224 x 224
299 e Resnet: 224 x 224 e Alexnet: 224 x 224

An example of an authentic image and a corresponding fake image is shown below.

(a) Authentic Image

(b) Fake Image

Figure 1: Example of an authentic and fake image

3.1 Dataset pre-processing
We broadly used two approaches feeding the input image to the models.

1. We fed the input image as is (only reducing the resolution with respect to a particular model)
2. We applied Error Level Analysis to the image before feeding it to the model

ELA (Error Level Analysis) is a technique that identifies areas within an image that are at different
compression levels and can be applied to images with lossy compression. For a JPEG image, the



entire picture should be at the same compression level. If a section of the image were to be at a
significantly different level, it likely indicates a digital modification[3]. Using this technique, we
pre-processed our dataset of JPEG images and then fed the images into the CNNs. This pre-processing
step was vital as it aided the models and improved their performance greatly.

Figure 2 shows an authentic and fake image after undergoing Error Level Analysis:

(a) Authentic Image (b) Modified Image (c) Close up of modified section

Figure 2: Error Level Analysis on Images

4 Methods

After pre-processing the images, we trained and evaluated the models of varying architectures on our
dataset to gain a sense of which models performed better. Hyper-parameter tuning helped push the
performance of the best model by a small margin.

4.1 Loss Formulation

As this is a binary classification task at hand, we chose Cross Entropy Loss to optimize on. While
Cross Entropy Loss penalizes both types of prediction errors (false negatives and false positives), it
especially penalizes predictions where the model was confident but incorrect.

CrossEntropyLoss =Y (—y * log(p) — (1 — y) * log(1 — p))

4.2 Network Architectures

Custom CNN is a simple shallow CNN we tested with two convolutional layers, Relu activation
and Max pooling. This was used to understand how well a shallow CNN performs at detecting fake
images.

AlexNet[11] was the first widely popular CNN architecture that beat traditional image classification
methods. It is composed of five convolutional layers followed by three fully connected layers. It used
the ReLu activation function instead of the then standard Tanh and Sigmoid for non-linearities.

VGG16[12] improved over Alexnet by replacing the larger kernels with smaller 3x3 ones, and
stacking to create 11 or more layers. This network showed that the depth of the network was critical
for good performance.

Inception[13] devised inception modules and a bottleneck layer that address the computational
requirements needed by VGG16. It used the idea that an efficient deep CNN architecture should only
have sparse connections between activations.

Resnet[5] was proposed to address the issue of vanishing gradients in very deep CNNs by using
identity shortcut connections, parallel to the regular convolution layers. These shortcut connections
can skip one or more layers, as shown in Figure 3. We used a 18-layer Resnet for our experiments.

Densenet[10] built on top of networks proposed earlier to address the vanishing gradients problem.
Since all earlier netwokrs created shorter paths from earlier layers to later layers, Densenet simply
connected every layer to all subsequent layers. This strengthened feature propagation, encouraged
feature usage, and substantially reduced the number of parameters allowing for deeper networks.



Figure 3: A residual network compared to a regular deep network[4]

4.3 Training

We initialized these architectures with pre-trained weights and tested both training only the last layers,
as well as training all available layers. We found that training all layers consistently outperformed
training only the last layers, although it was computationally more expensive.

We utilized the Adam optimization algorithm[] to update the weights of the neural network. Adam is
popular and been known to do well for CNNs.

4.4 Hyperparameter Tuning

The hyperparameters we tuned for our models were Mini-batch size, Number of Epochs, Learning
Rate and L2 regularization rate. We used grid search and bayesian optimization to tune the parameters.

Grid Search simply tries every possible combination of hyperparameter values and returns the
combination that gave the best dev set accuracy. We had a 256 cell grid with the following values.
Mini-batch size: 25, 50, 75, 100 Number of Epochs: 15, 35, 70, 100
Learning Rate: 0.00025, 0.0005, 0.00075, 0.001 L2 Regularization: 0, 0.005, 0.01, 0.05

Bayesian Model-based Optimization keeps track of past evaluation runs to form a model mapping
hyperparameter values to a probability score on the objective function. We defined similar bounds as
above and optimized for dev accuracy.

Both the methods of hyperparameter tuning gave similar results.

5 Results

Baseline Logistic Regression Model: We implemented a Logistic Regression model using a single
neuron neural network as our baseline model. We achieved a dev set accuracy of 59% using this
model.

CNNs: Of the numerous CNN architectures that we tested, we found that the Resnet architecture
outperformed the others in terms of the dev set accuracy, with densenet coming in at a second. Apart
from accuracy, we also looked at other metrics such as precision, recall and F1 Score.

We believe that the Resnet performed marginally better than the other architectures as it effectively
takes care of the vanishing gradients issue while being a sufficiently deep (18-layer) network. It is
also less computationally expensive compared to DenseNet and did a good job of generalizing to
unseen data. We believe densenet performed well as a close second for similar reasons.

After finding the best performing CNN architecture, we performed hyperparameter tuning. The
hyperparameters that we tuned were mini-batch size, learning rate and L2 regularization. We found
that the optimal hyperparameters for the Resnet architecture with all weights unlocked were:

LearningRate = 0.00025 Mini — batchSize =100 L2Regularization = 0.005

We used this model architecture and trained it using both original images (resized to 224x224), as
well as ELA preprocessed images.



We observed a stark increase in accuracy when Error Level Analysis was used in the pre-processing
step. We obtained an accuracy of 75% when the training was done on original images and an accuracy
of 94% when the training was done on images that were preprocessed using Error Level Analysis.
The varying compression levels in modified images clearly aided the model.

Metrics observed for our model:

_ TP+TN _ ... TP _
Accuracy = pprrnirprrny = 0-94 Precision = 75755 = 0.9212
_ TP _ __ 2xPrecisionxRecall __

Recall = TPIFN — 0.9355 F'1Score = Preca Reoall. = 0.9283

Figure 4 shows the ROC Curves and the best model’s Dev set confusion matrix.

&

(a) ROC Curve (Dev Set) (b) ROC Curve (Test Set) (c) Confusion Matrix for best model

Figure 4: ROC Curves and Confusion Matrix

Table 1 shows the best models for each CNN architecture and their performance metrics.

Model architecture | Accuracy onraw | Accuracy on ELA | Precision on ELA | Recall on ELA | F1 Score on ELA
AlexNet 67% 90% 83% 94% 88%
VGG16 68% 88% 82% 89% 86%
Inception 64% 91% 86% 93% 89%
ResNet 75% 94% 92% 93% 93%
DenseNet 67% 89% 94% 95% 89%

Table 1: Comparison of various CNN Models

Evaluating our tuned ResNet model on the test set (pre-processing using ELLA) gave us an accuracy
of 88%.

Error analysis: Looking at the examples that this model got wrong, we found there is no particular
type of image that it was prone to misclassify. The errors were equally distributed across the various
categories (nature, art etc). One interesting aspect about the images is that they tended to be smaller
of size around 250 x 350 before they were resized whereas typical dataset images were of size
around 800px. This suggests that there may not have been enough resolution of information for the
altercation in the image to be detected. In addition, some errors were apparent from the limitations of
the ELA pre-processing. For a few images, altercations were not detected and so an a diff image of
all black essentially was generated which ended up being classified as real when it was fake.

6 Conclusion/Future Work

We found that the Resnet CNN architecture outperformed the other architectures. We also observed
that performing ELA (Error Level Analysis) on the images before feeding them to the CNN helped
increase the prediction accuracy considerably. We were able to increase our accuracy from 59% (our
baseline model Logistic Regression) to 94% using a ResNet.

Next Step: Trying ensemble techniques like Bagging and Boosting have shown great promise in
tackling variance issues in models and generalizing well to unseen data. Therefore, creating numerous
models and leveraging ensemble techniques can further help to develop a more robust model and also
increase the classification accuracy.

Next Step: An End to end learning approach. Our best model relied on hand engineered features.
An area for future research is training an end-to-end model that performs equally as well on this
task using raw inputs. This would also be beneficial to other image types where or cases error level
analysis is not as effective. Finally, we want to build defenses against adversarial examples/attacks.



7 Contributions

All the team members contributed equally to the project.

References

[1] Mo, Huaxiao & Chen, Bolin & Luo, Weiqi (2018) Fake Faces Identification via Convolutional Neural
Network, Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, pp. 43—47.
New York, NY, USA: ACM.

[2] Kim, Dong-Hyun & Lee, Hae-Yeoun (2017) Image Manipulation Detection using Convolutional Neu-
ral Network International Journal of Applied Engineering Research, pp. 11640-11646. : Research India
Publications.

[3] J. Dong & T. Tan (2009) Effective image splicing detection based on image chroma 2009 16th IEEE
International Conference on Image Processing (ICIP), pp. 1257-1260. : IEEE.

[4] Jordan, Jeremy., Common Architectures In Convolutional Neural Networks., 2019,
https://www.jeremyjordan.me/convnet-architectures/. Accessed 10 Mar 2019.

[5] He, Kaiming, et al., Deep residual learning for image recognition., Proceedings of the IEEE conference on
computer vision and pattern recognition., 2016.

[6] J. Dong, W. Wang & T. Tan (2013) CASIA Image Tampering Detection Evaluation Database., 2013 IEEE
China Summit and International Conference on Signal and Information Processing,pp. 422-426 , Beijing.

[7]1 Huh M., Liu A., Owens A., & Efros A.A. (2018) Fighting Fake News: Image Splice Detection via Learned
Self-Consistency. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision — ECCV 2018.
Lecture Notes in Computer Science, vol 11215., Springer, Cham

[8] Zhou, P., Han, X., Morariu, V.I., & Davis, L.S. (2018). Learning Rich Features for Image Manipulation
Detection.,2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,pp. 1053-1061.

[9] Sovathana, Phat., CASIA Dataset., https://www.kaggle.com/sophatvathana/casia-dataset., Accessed 15 Jan
2019.

[10] Huang, Gao, et al., Densely connected convolutional networks., Proceedings of the IEEE conference on
computer vision and pattern recognition., 2017.

[11] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton., Imagenet classification with deep convolutional
neural networks., Advances in neural information processing systems., 2012.

[12] Simonyan, Karen, and Andrew Zisserman., Very deep convolutional networks for large-scale image
recognition., arXiv preprint arXiv:1409.1556 (2014).

[13] Szegedy, Christian, et al., Going deeper with convolutions., Proceedings of the IEEE conference on computer
vision and pattern recognition., 2015.

[14] Kosaraju, Muindi, Lundia., ’Deepfake Detector Code Repository’. Github, 2019,
https://github.com/jervisfm/cs230-project. Accessed 20 Mar 2019.



