Predicting programming success using deep learning

Neeraj Mathur Raejoon Jung Ben Stenhaug
Stanford University Stanford University Stanford University
mathurn@stanford.edu raejoon@stanford.edu stenhaug@stanford.edu
Abstract

Deciding when to help a learner working on a task has been a decision that educators
have been faced with for centuries. Now that some educational opportunities are
moving online, it is the task of a computerized system. We apply deep learning
to code.org submissions to predict if a student will continue to struggle with a
task. We find that logistic regression outperforms deep learning methods on both a
very basic and basic task. We hypothesize that the lack of lift from deep learning
techniques is due to the basic structure of these block-based coding exercises, and
that the value of deep learning will be significantly higher for more complex coding
tasks.

1 Introduction

There is tremendous interest in building coding proficiency in students. One example is Obama’s
2016 Computer Science for All Program and the development of Code.org where students can begin
to learn computational thinking with block-based programming exercise. One of the challenges
in this space is that learning happens best when students get responsive feedback on their work,
including hints when they begin to go down an unproductive path. This is only possible at scale using
automated algorithms that do not require human intervention.

2 Related work

When to provide hints and what hint to provide has been a topic of educational interest for decades.
This history was summarized and pushed into the age of deep learning in 2015 by Piech et al. [1].
They focus on which hint to provide in particular and describe their technique as a desirable path
algorithm in which a student’s submission history is analyzed and a hint’s goal is to nudge a student
onto the closest of one of a few paths to success.

In 2017, Wang et al. pushed this work forward by contemplating optimal embeddings for block-based
programming exercises. They distinguish two possible tasks: prediction of whether the student will
be successful on the next programming exercise and based on a sequence of submissions predict
whether a student will be successful on the current programming task. The latter is in someways
preferable because it offers the ability to provide immediate help to students. They use an LSTM
RNN architecture where each submission is represented most compactly as an abstract syntax tree
(AST), which results in 96% hold-out accuracy (the majority class is 54%).

3 Dataset and Features

Code.org released the attempts from thousands of students for two exercises from the 2013 hour
of code. [4] Dataset consists of every submissions from every students. The dataset has a set of

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Time distributed Single sequential output:

(| Binary sequence Time distributed

Single sequential input:

i S 12 . b Ll e Singesequentil output:
(a trajectory) ™ ense | tTl-thsub. Single sequential input:

L:otherwise ki ™™ —> Dense > Binarysequence
Sizer H (a trajectory) _ 0: success within [t, t+T-1]-th sub.
(Number of trajectories, 1: otherwise
Max length of a

trajectory)

Size:
H : (Number of trajectories, Sizes . .
) Max length of a (Number of trajectories, : : Stre:
5 trajectory) Mai longth of n trajectory] 4 (Number of trajectories,
- L : P Max length of a trajectory)
—> ——> Dense .
| Dense Loss Binary cross-entropy
e Loss: Binary cross-entropy Optimizer:

Embeddings
LSTM
Embeddings

v

Optimizer: Adam Stochastic gradient descent

(a) LSTM model (b) Logistic regression model

Figure 1: Success prediction model

unique submissions and a set of trajectories. Each unique submission is represented by an abstract
syntax tree (AST). A trajectory is an array of AST ids which represent the series of attempts from a
student. A trajectory id is associated with each unique trajectories and student ids are mapped to these
trajectory ids. Note that these mappings are many-to-one; two students can have the same trajectory.

The data comes from two simple block-coding exercises where the student uses blocks of code
to navigate a blue arrow to a green heart. Note that the second exercises offers additional blocks
including conditional logic and looping.

repeat until v

move forward
L4 turn L4 do [if path EiZTED
(Y move forward

do move forward
=

eise (turn (ISR
L

LGl right O v

move forward

4 Methods

Given the submission data from code . org, our goal is to perform the following task: Given a partial
knowledge of a trajectory from the beginning to timestep ¢, predict whether the student will succeed
in the assignment within a time window of 7 steps (i.e, in the range of timestep [t,t + 7 — 1]).

In order to solve this problem, we use a many-to-many LSTM RNN model with the trajectories as
inputs. Trajectories are represented as vectors containing the class identifiers of the ASTs. Therefore,
the model requires programming embeddings to represent ASTs and to be fed in to LSTM layer. We
experimented with two options; (1) create our custom embeddings using a separate model, (2) let the
optimizer of the main prediction model optimize the weights of the embeddings.

We first describe our main success/failure prediction model and then present how we generated
programming embeddings using a separate model.

Output labels are generated by passing a sliding window filter on the binary success/failure vector
given a trajectory.

4.1 Main prediction model

The success prediction model using LSTM is presented in Figure la. A student’s effort to solve
an assignment is an iterative process where a student identifies mistakes from its previous code
submissions and improve upon them. Because of the iterative nature, utilizing a recurrent layer
component seems to be a suitable choice. Each input data is a sequence of AST ids of variable length.
Since we want to vectorize the multiple dataset and use a model of fixed size, we set the width of the
model to be the maximum length of a trajectory (which we denote as T'_traj) and extend the input
data to match the length by padding the last AST id in each trajectory.

The AST ids are passed to the embeddings layer to get a vector representation of each code submis-
sions. The embeddings layer can be optimized jointly or can use an existing embeddings mapping
generated from another model such as in Section 4.2 The embeddings are passed to a single LSTM

Single sequential input: Single sequential output:

series of one-hot encoded Shifted version of the input
code blocks for a single
submission Size:

(Number of submissions,
Size: = LSTM > DropOUt —> Dense — max length of a submission,

(Number of submissions, (Max length x 1) (p=0.5) Number of code blocks)
Max length of a submission,

Number of code blocks)

Loss: Categorical cross-entropy
Optimizer: Adam

Figure 2: Next block prediction model to generate programming embeddings

model which outputs 32 hidden states for each timestep. These 32 X T'_traj hidden states go through
a time-distributed dense layer which are 7" separate dense layers, sharing identical parameters and
take 32 inputs. The outputs of the dense layers pass sigmoid activation functions to generate values
ranging from 0 to 1 which can be interpreted as probability of failure.!

To gauge the performance of the LSTM model, a baseline model using logistic regression in Figure 1b
is implemented. The model is identical to the LSTM model with the exception of the missing LSTM
layer. Note that although a single data point is a sequence of ASTs, each ASTs are directly fed into
identical but separate dense layers.

Since this is a binary classification problem, we use a binary cross-entropy function as the loss
function for both models.

L=-— Z Ytraj_id,t L08(Jtraj_id,t) + (1 — Yeraj_id,t) 108(1 — Jtraj_id,t) 1)
traj_id
tE[O,Ttraj—l}

4.2 Embeddings generation model

There has been studies showing the generating separate programming embeddings can improve a
prediction task for programming languages ([1,2]). From the insight of these studies, we created
our own programming embeddings to be used in the main prediction model. In order to create
the embeddings, we devised a model which predicts the next code block given a partial view of a
serialized AST from the beginning to any given point. Our hypothesis is that the model performing
the following task would reveal the high-level semantics of the input AST as analogous to the next
word prediction task in natural language processing. The model for such task is presented in Figure 2.

Each input label is an AST serialized by performing a preorder traversal in the AST. When performing
the traversal, we add two special blocks call and return to identify vertical traversals with traversals
across siblings. 2 Also we add an end block to indicate the end of the program. This is required in
order to pad these end blocks to the serialized ASTs to match the maximum AST length (which we
denote as T'_ast). The blocks are one-hot encoded and therefore the input data matrix is 3-dimensional
(AST_ids, timestep, 0/1)

The output labels are generated by shifting the input labels by one timestep since we are prediciting
the next block. Additional end block is appended at the end of the output label vector.

Given a bounded problem space in each assignment, our hypothesis was certain sequence of blocks
will have correlation with appearance of a particular block in the immediate future in order to solve
the assignment. Therefore, we suspected that an LSTM RNN model would also be appropriate for
the next block prediction task. The one-hot encoded blocks (of total B unique blocks) are fed into the

"'We label the failures as 1 in order to examine the recall of the predictions. It is important to properly predict
most of the student which might fail in the context of student feedback.

2We omit these blocks in Hoc4 dataset since there are no control blocks and the program runs in a strictly
serial manner.

LSTM layer with a single output value for each timestep. The colleciton of these values are fed into a
dropout layer for regularization. The final layer is a single dense network which outputs B x T'_ast
values after passing a softmax activations. Softmax activation is used since the task is a multi-class
classification problem with B classes. We also use the categorical cross-entropy loss function for this

purpose.
L=— Z Z Yast_id,t,c IOg(gast_id,t,c) (2)
]

ast_id cel0,B—1
t€[0,Tost—1]

5 Experiments/Results/Discussion

Tables 1 and 2 provide results for both of the exercises. We find significantly better performance on
Hoc4 than on Hoc18 across all models and performance measures. This makes sense as Hoc4 is the
easier of the two exercises. More interestingly, we find that logistic regression without embeddings is
the highest performing model in both cases. We hypothesize that logistic regression performs well in
these cases because the exercises are straight-forward. Embeddings not being helpful could either
also be the result of the exercises being straight-forward, or could be an indicator that the embeddings
fail to usefully characterize the code submissions.

| Table 1: Results for Hoc4 (window length 2) |
Accuracy Precision Recall F1-Score

Logistic regression (w/o embeddings) 0.9276 09125 09579 0.9344
Logistic regression (w/ embeddings) 0.8557 0.8714 0.8627 0.8665
RNN (w/o embeddings) 0.9010 0.8768 0.9499 0.9112
RNN (w/ embeddings) 0.9255 0.9147 0.9515 0.9325

| Table 2: Results for Hoc18 (window length 64) |
Accuracy Precision Recall F1-Score

Logistic regression (w/o embeddings) 0.7625 0.6944 0.8627 0.7628
Logistic regression (w/ embeddings) 0.6894 0.6370 0.7512 0.6823
RNN (w/o embeddings) 0.7778 0.7876 0.7142 0.7424
RNN (w/ embeddings) 0.7784 0.7656 0.7523 0.7523

We trained and validated the baseline and target NN model for both Hoc4 and Hoc18 coding exercises.
We ran them with and without embeddings, which led to training and validation of eight independent
models in total.

The embeddings were generated once for both Hoc4 and Hoc18 using the embeddings generation
model define in section 4. This model was trained with dropout of 0.5, using Adam optimizer and
Cross-entropy loss. The model was trained with batch size of 16 for 50 epochs. The output weights
of LSTM layer were used as embeddings. Once the embeddings were generated, Baseline model was
trained and validated with and without embeddings for 10 epochs using mini batch of 32, Stochastic
gradient descent optimizer, cross-entropy loss and window length of 2.

The target NN model was also trained and validated with and without embeddings for 50 epochs
using mini batch of 32, Adam optimizer, binary cross-entropy loss and window length of 64. We’ve
also attempted to train the target model with mini batch size of 16 and 64, however we didn’t observe
any significant difference in the results.

During the training of these models we found that it is critical to pay attention to the distribution of
the data especially to address the data representation for the few students who make many attempts
before they are successful with the given programming exercise. We also experienced that predicting

the next block to generate code embeddings may not be useful as students tend to use different logic
in coding during learning. Additionally, predicting for longer window length is harder since it needs
to predict outcomes in further future.

After undergoing the complete process, there are still the following three key open questions

1. How to determine the optimal window length which is an interesting educational question
as well that corresponds to how long to let a student struggle

2. What should be unit of analysis for the these programming exercises, would it be individual
student or a unique trajectory submission by students

3. The baseline performs incredibly well for which we hypothesize that this is the result of the
simplicity of the coding exercise.

We’ve identified recall as the key metric because intervention to help student is not costly and having
a student give up is.

6 Conclusion/Future Work

In summary, the baseline model does incredibly well (better than our deep learning approaches).
There are a couple of possibilities for why this might be the case. One possibility that, in contrast
to NLP, it’s possible that code embeddings are not useful in some cases because students might use
different logic in coding during learning. Another possibility is that these coding exercises were so
simple such that our baseline of logistic regression was able to capture the structure of the block-based
coding exercise information.

This research opens up two interesting lines of future research. The first is with regard to automatic
hint generation in online educational environments. The advent of learning platforms such as Khan
Academy has an ever-increasing number of students learning from software. This will require models
that can offer hints that are both effective and timely. The second is with regard to the use of deep
learning to analyze coding both in an educational and professional setting. The core beauty of deep
learning techniques is that ability to leverage complicated structure in data that previous models could
not. Coding both block-based and text-based is a perfect opportunity for deep learning to offer both
predictive and generative future abilities.

GitHub Repo: The code for this work is available at the following Github repo for future reference
https://github.com/raejoon/cs230-bnr

7 Contributions

Raejoon and Neeraj performed the majority of model architecture and tuning. Ben created the input
and output data for the embeddings and the core model. All authors contributed equally to the writing
of this paper.

References

[1] Piech, Chris, et al. "Autonomously generating hints by inferring problem solving policies." Proceedings of
the Second (2015) ACM Conference on Learning@ Scale. ACM, 2015.

[2] Wang, Lisa, et al. "Learning to represent student knowledge on programming exercises using deep learning."
Proceedings of the 10th International Conference on Educational Data Mining; Wuhan, China. 2017.

[3] Vihavainen, Arto. "Predicting Students’ Performance in an Introductory Programming Course Using Data
from Students” Own Programming Process." Advanced Learning Technologies (ICALT), 2013 IEEE 13th
International Conference on. IEEE, 2013.

[4] https://code.org/research

