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1 Introduction

The ability to accurately determine and track the pose of a noncooperative spacecraft is becoming
ever more demanding for current and future on-orbit servicing and debris removal missions such as
RemoveDEBRIS mission by Surrey Space Centre (1), Phoenix program by DARPA (2), and Restore-L
mission by NASA (3). Performing a pose estimation based solely on a monocular camera is especially
attractive due to its low power and mass requirements. Current state-of-the-art monocular-based
methods (4; 5) resort to classical image processing techniques which tend to lack robustness in
spaceborne applications because images taken in space are characterized by low signal-to-noise ratio
and adverse illumination conditions. Recent works from Stanford Space Rendezvous Laboratory
(SLAB) propose a technique based on Convolutional Neural Network (CNN) that frames the pose
estimation as a classification problem by discretizing the pose space (6; 7). Specifically, (7) first
discretizes the spacecraft attitude space and uses region-proposal network (8) to regress the region-
of-interst and predict the attitude class. While they have presented the potential of using CNN as a
more robust mechanism for spacecraft pose estimation, the works are limited to synthetic spacecraft
images rendered based on 3D models. In reality, the CNNs must be robust to images of the same
target from different sources and environment, which tend to vary in spacecraft textures, surface
properties, illumination conditions, and so on. Therefore, this project extends the works done in (6; 7)
by framing the pose estimation as a bounding box regression problem while also exploring a training
method that can improve the network’s robustness to images from different distributions.

The general problem statement is to determine the relative attitude and position of the camera frame,
C, with respect to the target’s body frame, B. The relative position and attitude are respectively
represented by a position vector, tgc, from the origin of C to the origin of 5, and a quaternion, qgc,
which aligns the reference frame BB with C. Figure 1 graphically illustrates these reference frames
and variables.

2 Related Works

The general learning-based pose estimation approaches can be divided into three categories depend-
ing on the output of CNN - classification, pose regression, and bounding box regression. Pose
classification first discretizes the pose or attitude space into a discrete number of bins and train the
network to predict the pose class (9; 6; 7; 10; 11). Given that classification is a well-posed problem in
machine learning, this approach is advantageous since it is relatively easy to re-use the state-of-the-art
classification networks. However, the network performance depends on how well the pose space is
discretized, and the approach generally requires post-refinement process using the crude predicted
pose class.
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Figure 1: Definition of the reference frames, relative position, and relative orientaiton.

Pose regression, on the other hand, attempts to directly regress the 6D pose information — position
vector and relative quaternion or SE(3) transform — using a single or multi-staged CNN architecture.
Current state-of-the-art in this approach is PoseCNN (12) which outputs semantic labels and 6D
pose as direct results of forward propagation. PoseCNN shows great performance by decoupling 3D
translation and 3D rotation estimation and introducing novel loss functions. However, even PoseCNN
has limited accuracy by itself and is augmented using a diverse post-refinement procedures, such as
Iterative Cloud Point (ICP) with depth information or iterative model matching architecture such as
DeepIM (13).

Another approach is to regress the eight corners of a 3D bounding box around the target (14; 15).
Then, given the predicted 2D corners of a bounding box and a known 3D model of the target,
Perspective-n-Point (PnP) problem can be solved (16) to extract the rotation matrix and position
vector. In this approach, camera intrinsic is decoupled from CNN, since 2D-3D transformation is
performed after CNN prediction. Therefore, if the network is trained to extract the corners based on
the shape of the object, the network theoretically need not be re-trained if a servicing spacecraft is
equipped with different camera.

3 Dataset

One of the main difficulties of training a neural network for pose estimation is lack of target images
with annotated pose labels. Especially in the context of spacecraft pose estimation, it is extremely
challenging to even obtain an image of a spacecraft on-orbit using the camera on another spacecraft,
let alone annotate the pose. Fortunately, SLAB has recently developed the Spacecraft PosE Estimation
Dataset (SPEED) (7) which is capable of generating synthetic images of spacecraft using MATLAB
and OpenGL with desired orientation and position from a camera with known instrinsics. Moreover,
by specifying the position of Earth and Sun, it can also simulate a realistic illumination condition due
to Earth albedo and sunlight. These synthetic images generated from SPEED can then be used to
train and evaluate any pose estimation network. In this project, SPEED is used to generate images of
Tango spacecraft from PRISMA mission (17) with desired relative position and attitude with respect
to the camera (Fig. 3(a)). The camera model is identical to the one used in Mango spacecraft, which
captured the images of Tango during its proximity operation phase.

This paper also uses PRISMA-21 dataset, which includes 21 images of Tango spacecraft during
PRISMA mission (17) taken by Mango spacecraft (Fig. 3(b,c)). These 21 images have hand-labeled
pose information, giving us the ability to test the performance of a network on real on-orbit images.

4 Methods

In this project, the CNN is trained to regress the bounding box corners which can then be used to
extract pose information by solving the PnP. This method is preferred over other approaches due
to the fact that the camera property is decoupled from the CNN, potentially preventing the need of
re-training the entire network if different cameras are to be used. Moreover, the predicted bounding
box corners can be regarded as the measured features that can be tracked using the standard state
estimation filters on-board the spacecraft.



4.1 Pose Estimation Network Architecture

The architecture used in this project is developed by Tekin et al. (15), who takes YOLOV2 (18) as
its backbone. Figure 2 visualizes the network structure. By making the modification such that each
final grid detects normalized (x,y) coordinates of eight 3D bounding box corners and a centroid,
this network is able to efficiently regress bounding box corners in a single-shot manner. Tekin et
al. also adds a pass-through layer to leverage features detected from an earlier layer for improved
performance. The network has an overall stride factor of 32. It takes (416 x 416 x 3) RGB input and
reduces it to (13 x 13 x (19 + C)), where C'is the number of detectable classes, and the dimension
size of 19 includes eight 2D coordinates of bounding box corners, a centroid, and objectness score.
Since this project assumes a single target in image frame, the final dimension is (13 x 13 x 20), and
the class index is left to be zero. Just as in YOLOV2, the bounding box corners from the grid with the
highest objectness score are taken as the predicted final bounding box.

(9x2+1+C)

Figure 2: The network structure of Tekin et al. (15)

4.2 Texture Randomization

Inspired by (19), the neural style transfer algorithm by Jackson et al. (20) is used to efficiently
generate texture-randomized dataset of synthetic spacecraft images offline. The idea is to randomize
the target texture such that the network is forced to leverage the features that are invariant to the local
texture, i.e. the global shape of the target.

The novelty of (20) is the embedding of the style into a vector. During training, the authors keeps
track of the mean (1) and covariance () of the style embeddings for the entire dataset of style
images. Then, at testing, they propose to simply sample the random style from the multivariate
normal distribution parametrized by (u, X2). The randomly sampled style is then interpolated with the
content style via Eq. (1),

z=0aN(u,X)+ (1—-a)P(c) (1)

where « is the parameter determining the degree of interpolation. Naturally, higher o leads to more
intense variation of the texture.

4.3 Training

Using SPEED, 9,600 images of Tango spacecraft from PRISMA mission are initially generated. The
spacecraft in each image has random attitude, but they have a fixed relative position such that the
centroid of the spacecraft is aligned at the image center with constant distance of 10 meters. For each
image, the black-and-white masks are created as well to enable accurate cropping of the image. Then,
a separate style-transfered dataset is created by applying (20) with o = 0.25 then cropping with the
provided mask in order to prevent potential distortion of the shape.

Then, at the training stage, either style-transfered or original images are selected based on a hand-tuned
probability. For this instance of training, style-transfered images are selected with the probability of p
= 0.75 to allow for more variation in spacecraft texture. Then, the chosen image is randomly translated
and scaled. Afterwards, randomly cropped Earth image from Himawari-8 Earth imagery! is inserted
in the background with probability of p = 0.5. Lastly, if the training image is original, synthetic

'https://himawari8.nict.go.jp/



image, random Gaussian noise is applied with p = 0.5. If the training image is style-transfered one,
then a random occlusion (dark rectangle) is applied with p = 0.5 to mimic the shadowing effect due
to sunlight.

Out of 9,600 images, 80% are chosen as training dataset. The network is trained with the batch size
of 48 using Adam optimizer. The momentum for the optimizer is chosen as 81 = 0.5, and a constant
learning rate of 1 x 10~* is employed. For testing, only random translation and scaling are applied
to the original synthetic images. The codebase for this project is written using PyTorch v1.0.0.

4.4 Metrics

The following three metrics are used to evaluate the accuracy of predicted bounding box corners.

e Mean Pixel Error (MPE) is computed by summing the magnitude of predicted and ground-
truth bounding box corners and centroids scaled by the original image size (w, h), i.e.
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o Translation Error (Ey) is computed by taking the magnitude of the difference between the
ground-truth position vector (tgc) and the predicted position vector (tgc) via solving PnP
with 3D model and predicted bounding box corners, i.e.

Er = |tgc — tac|
¢ Rotation Error (ER) Is computed via the following:

tr(RBC RI;FC) -1

ER = arccos 5

where Rpgc is the ground-truth direction cosine matrix from C to 5, and f{BC is the predicted
rotation matrix obtained by solving the same PnP problem.

5 Results

5.1 Training without style transfer

Table 5.1 shows the results of the network’s performance when the style transfer is not applied. We
see the network trained on synthetic spacecraft images perform extremely well on synthetic testing
images as well with mean angular error on the order of 2° and millimeter-level position error along
the image plane. Note that the biggest source of position is along Z-axis, i.e. the direction of camera
boresight, which is expected as any change in box dimension due to pixel error results in bigger depth
change when the spacecraft is farther away from the camera. See Fig. 3(a). The same model, however,
performs poorly on real images. Interestingly, the network outputs a box-shaped prediction; however,
the box is either in completely off attitude and often away from the region of interest (figures are
included in the poster).

Metrics SPEED PRISMA-21

MPE [pix] 3.615 113.5
Mean Er [m] [0.009, 0.008,0.188] [0.366,0.138,1.715]
Median Er [m] [ 0.006,0.005,0.101 ] [0.153, 0.074, 1.665 ]
Mean ER [deg] 2.202 61.396
Median ER [deg] 1.818 22.395

Table 1: Testing results on SPEED test set and PRISMA-21 images without style transfer.




5.2 Training with style-transfer

Table 5.2 lists the results on SPEED and PRISMA-21 images when style transfer is performed to
the dataset with o = 0.25. First note the overall improvement on PRISMA-21 dataset in all metrics
except mean position error. However, significant improvements in overall mean pixel, rotation error,
and median position error suggest the network is able to perform bounding box regression without
having been trained on them (Fig. 3(b)). There are, of course, a number of failure cases. It turns out
the network fails at bounding box regression when the shadowing due to the illumination is so severe
such that the image only contains partial shape of the target, as shown in Fig. 3(c). Since the network
is supposedly focusing on the global shape rather than local texture, it is reasonable that the network
fails at regression when the shape is partially missing. This also suggests that random occlusion at
testing is not a solution to this problem.

Metrics SPEED PRISMA-21
MPE [pix] 6.291 25.678
Mean Er [m] [0.024,0.023,0.655] [0.106,0.160, 3.972 ]
Median Er [m] [0.011,0.009,0.216] [0.028, 0.030, 0.704 ]
Mean Ex [deg] 4.907 11.334
Median Ey [deg] 3.330 6.273

Table 2: Testing results on SPEED test set and PRISMA-21 images with style transfer.
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Figure 3: Comparison of network performance. (a) is using the network trained with vanilla SPEED
images. (b) and (c) are using the network trained with style-transfered images.

6 Conclusion

This project employed the technique of bounding box regression to perform pose estimation on
spacecraft images. It also incorporated the idea of texture randomization via neural style transfer such
that the network is forced to ignore the texture of the target, which happens to be one of the major
differences between synthetic and real images from on-orbit missions. In the future, I would like to
explore different techniques that can be added to improve robustness against occlusion. I would also
like to test its performance against the images taken with different cameras.



7 Notes

This project is part of my on-going research in Space Rendezvous Laboratory. The codes are available
athttps://github.com/tpark94/SLAB_ModelFreePoseEst.git under develop branch.
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