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Abstract

We propose a Generative Adversarial Network
(GAN) with partial convolutions for image in-
painting. Using local and global discriminators,
we show the importance of adversarial train-
ing to remove blur and produce crisp details.
We wvisualize how skip connections tn a sym-
metric U-Net-like architecture allow our model
to learn increasingly finer details of an image.
It is demonstrated that very good results can be
achieved even with significantly smaller networks
than state-of-the-art approaches such as [6].
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Figure 1: Image Inpainting

1 Introduction

Pictures and images have become ubiquitous in
our lives. Consequently, there is an increas-
ing need for post-production and image editing.
One important type of editing is to remove un-
desired parts of an image and replace them with
suitable imagery that blends in with the rest of
the image. This task is called image inpainting.
Figure 1 shows an application of this with our
specific mask.

Existing approaches to inpainting normally
replace the masked holes with a substitute value,
for example the mean value. However this ap-
proach often suffers from artifacts such as color
differences or blur since the model output is also
conditioned on these invalid placeholders. To
circumvent this issue, we propose a Generative
Adversarial Network (GAN) with partial convo-
lutions [6] that only takes into account valid pix-
els. To the best of our knowledge, our approach
is novel in that we are the first to train partial
convolutions adversarially as part of a GAN.

2 Related Work

In recent years, computer vision has made sig-
nificant progress on several tasks ranging from
image classification and object detection to seg-
mentation. This has been made possible due to

the recent advancements in convolutional neu-
ral networks (CNNs). These advancements have
further enabled progress in other related fields
such as better understanding of image context
and generation of realistic images using GANs
(3].

The advancements in GANs have made con-
tent prediction and classification more powerful.
These models have been used by many projects
related to image inpainting as an approach to
more accurately being able to predict the miss-
ing part of the image conditioned on the known
image regions, as seen in [6, 3, 2, 7]. Pathak
et al. [7] introduce a network structure built on
an encoder-decoder architecture to predict the
missing parts of an image using an adversarial
loss. Their model performs poorly in generat-
ing low-level features and fine-detailed textures
and tend to overfit to local features and produce
a less realistic fill given the global features of
the training data. To address this issue, lizuka,
Simo-Serra, and Ishikawa [4] introduce a GAN
structure with a combination of local and global
discriminators. This proved to produce globally
and locally consistent results with realistic de-
tails.

More recently, a new type of convolutional
neural network called U-Net was used by [9] in
image inpainting for the first time. U-Net is a
fully convolutional neural network initially de-
veloped for biomedical image segmentation with
fewer training images while still yielding precise
segmentations [8]. This structure proved to be
useful in many domains and recently so in im-
age inpainting [6, 9]. The U-Net consists of an
AutoEnconder-CNN structure where additional
skip connections are introduced to concatenate
the features from each layer of the encoder and
those of the corresponding layer of the decoder.
These skip connections pass information over the
central bottleneck layer, which helps to preserve
some of the information outside the inpainted
regions [9].

More recently, Liu et al. [6] have obtained
very good results by using partial convolutions
[6]. In contrast to standard convolutions, par-
tial convolutional layers apply a binary mask
before calculating the convolution. [6] find this
approach to effectively reduce artifacts such as
color discrepancies and blurry output.

3 Dataset

The selected dataset is Places 365 [1]. It consists
of a large set of images of cities, buildings, parks



etc. Due to computational limitations, we use
30,000 images for training and 1,000 for testing.
To increase training speed, we scale the images
down to the size of 128 x 128 x 3. Figure 2 shows
a variety of examples from Places 365.

Figure 2: Examples from Places 365 [1].

We normalize the images in the training and
test set by dividing all pixels with 255. After the
normalization, a mask M containing two rect-
angular holes is applied to each training sample
(see Figure 1). The mask is defined as a set of
binary values M € {0, 1}128%128%1 where a 0 sig-
nals that the corresponding pixels in the training
sample is replaced by the average pixel value.

4 Methods

Our proposed model uses a DCGAN architec-
ture with partial convolutions and global and
local discriminators. To the best of our knowl-
edge, training partial convolutions adversarially
as part of a GAN is a novel approach which has
not been attempted before. Figure 3 visualizes
our GAN architecture. We discuss each different
component below.

4.1 Partial Convolutional Layers

Existing approaches normally replace the
masked holes with a placeholder value like the
image mean. This often results in artifacts such
as color inconsistencies or blurry output since
convolutions are also applied on these invalid
pixels. To address this issue, we use partial con-
volutional layers instead of typical ones as sug-
gested by Liu et al. [6]. In contrast to standard
convolutions, partial convolutional layers apply
a binary mask before calculating the convolu-
tion. Each of these layers comprises two sep-
arate steps: (1) a masked convolution step and
(2) a mask-update operation. In the convolution
step, the partial convolution p. at every sliding
window is defined as

if1TM1 >0,

] WIX®eM)c+b
Pe=19 ¢ else

where X is the pixel value of the current sliding
window, M the corresponding binary mask, and
W and b the filter weights. ¢ = w - h/(17M1)
is a scaling factor, where w and h correspond to
the width and height of the mask M. In the sec-
ond step, the mask is updated for the next layer
where each position m in the mask is expressed

if1TM1 >0,
else

With sufficient applications of partial convo-
lutional layers, the mask will eventually reach a
state where it only contains ones and the partial
convolution operates just like a normal convolu-
tion.

4.2 Generator

Our generator takes as input the masked im-
age I;, and produces an inpainted image I,,;
of the same size as I,,. The architecture fol-
lows a U-Net structure similar to Isola et al. [5]
with encoder and decoder parts. In the encoder
stage, partial convolutional layers successively
map the image to a more compact latent fea-
ture representation to learn the semantics of the
image. The decoder stage then uses this repre-
sentation to reconstruct a realistic version of the
full inpainted image. Following Isola et al. [5],
we connect each encoding layer through a skip
connection to the corresponding decoding layer.
Each layer is followed by a leaky ReLU activa-
tion with @ = 0.2 except for a sigmoid activation
in the last layer. We apply batch normalization
after each layer to speed up training. Table 1
summarizes our generator architecture.

Layer K S F Activation
PConv 5 2 64 ReLu
PConv 5 2 128 ReLu
PConv 3 2 256 ReLu
PConv 3 2 256 ReLu
PConv 3 2 256 ReLu
PConv 3 1 256 Leaky RelLu
PConv 3 1 256 Leaky Relu
PConv 3 1 128 Leaky Relu
PConv 3 1 64 Leaky ReLu
PConv 3 1 3 Leaky ReLu
PConv 1 1 3 Sigmoid

Table 1: Generator structure, K := kernel size,
S := stride, F' := number of filters.
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Figure 3: Network Architecture

4.3 Discriminators

Based on [4], we train both global and local dis-
criminators to distinguish real from inpainted
images. The global discriminator D, takes into
account the entire output image and produces a
binary value indicating a real or inpainted im-
age.

In addition, we use two local discriminators
to assess different parts of the image separately.
Specifically we use one local discriminator D;
that operates on the left third I,,:; of I, con-
taining the first of the two inpainted regions (see
mask in Figure 1), and one local discriminator
D, operating on the remaining two thirds I,
containing the second inpainted region.

We finally combine the three discriminators
into a single binary score D(D,, D, D,) using
a fully connected layer with a single unit and
a sigmoid activation. Table 2 summarizes our
discriminator architecture.

Layer K S F  Activation
Conv 5 2 32 ReLu
Conv 5 2 64 ReLu
Conv 5 2 64 ReLu
Conv 5 2 128 ReLu
Conv* 5 2 128 ReLu
FC - - - ReLu

* 5t Jayer only exists for global.

Table 2: Global and local discriminator struc-
ture, K, S and F are defined as in Tablel.

4.4 Loss Function and Training
Procedure

We use five types of loss functions:

o Llsp= 2 l(Tow — Lin) © 1 — M)|?

n_lj ”(Iout - Iin) © M||2

® Lysp =

* Luse = Lisp+ §Luse
o Lp=—log D(Xou) — log (1 — D(G(1;,)))
00 108 D(G(Lin))

where n; denotes the number of elements in
L. L35 corresponds to the mean squared er-
ror (MSE) in the inpainted regions, while £}z
corresponds to the MSE in the remaining parts.
Lp is the adversarial loss function for the dis-
criminators and L the generator loss.

Following [4], we train our model in three
phases: In the first stage, we train only the gen-
erator network on the combined MSE loss Lysg
for n; = 25,000 iterations. In the second stage,
we train only our discriminators for ny = 6,000
iterations on Lp. In the third stage, we simulta-
neously train the generator and discriminators
using Lp and Lg for n3 = 94,000 iterations.
The network weights are updated by an Adam
optimizer with mini-batch gradient descent us-
ing a batch size of 16. Training takes approxi-
mately 14 hours on an NVIDIA K80 GPU.
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Figure 5: Generator output G(I;,) after n num-
ber of iterations

5 Results

Figure 5 shows how our network increasingly
learns the semantics of an image during the
training procedure. At the beginning of train-
ing, our model begins to capture low-frequency
features like color and brightness. In the later
stages of training, the model is able to accurately
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Figure 4: (a) Full model with global and local discriminators and partial convolutions.

(¢c) NoLD (d) No PC  Ground truth

(b) Full

model but trained only on the MSE loss Lysg. (¢) Model without local discriminators. (d) Full
model but replacing all partial with typical convolutional layers.

reproduce higher-frequency features and gener-
ates crisp details in the inpainted regions.

As discussed by Yu et al. [10] and Liu et al.
[6], there is no clear candidate for a quantitative
metric to evaluate inpainting results since many
different plausible solutions exist. Currently, the
canonical approach is to rely on qualitative com-
parisons to evaluate the reasonableness of the
inpainted content.

Figure 4 shows the inpainted results pro-
duced by different specifications of our model.
Our model effectively learns the semantics of
the image and produces plausible content for the
inpainted regions. Previous work has often re-
lied on post-processing to reduce color discrep-
ancies and inconsistencies along the edges of the
inpainted regions. For example, lizuka, Simo-
Serra, and Ishikawa [4] use fast marching and
Poisson image blending. In contrast, we find
our approach does not benefit from similar post-
processing.

5.1 Adversarial Loss

Figure 6 reveals the importance of adversarial
training to produce crisp details in the inpainted
regions. When trained only on the MSE loss

L vse, our model still generates imagery that in-
corporates smoothly with the surrounding parts.
However, the inpainted content becomes signif-
icantly blurrier and fails to reproduce the fine
details of the image.

(a) Adversarlal (b) MMSE only

Figure 6: (a) Full model with adversarial loss.
(b) Same model but trained only on the MSE
loss LysE-

5.2 Local Discriminators

Figure 7 compares the results produced by mod-
els with and without local discriminators. Al-
though the differences are relatively small and
highly dependent on the image at hand, we gen-



erally find that using local discriminators re-
duces color discrepancies and produces crisper
details.

(a) Full model (b) No LD GT
Figure 7: (a) Full model with global and local
discriminators. (b) Model without local discrim-

inators.

5.3 Partial Convolutions

We also compare the performance of a network
with partial convolutions to a standard convo-
lutional neural network (CNN). We find using
standard convolutional layers has an ambiguous
effect: It tends to mitigate the checkerboard ar-
tifacts like the ones observed in Figure 8 (a).
However, in line with the work by [6], it also
introduces slight blur and color discrepancies as
can be seen in Figure 8 (b).

(b) Without PC

Figure 8: (a) Model with partial convolutions.
(b) Model with typical convolutions.

6 Conclusion and Future
Work

Our contribution is twofold: First, to the best of
our knowledge we are the first to train a GAN
with partial convolutions. Secondly, we show
that good results can be obtained with a signif-
icantly smaller network than with the state-of-
the-art approach by Liu et al. [6].

Future work may take two avenues: First,
we would have liked our model to be able to
inpaint arbitrary shapes. However, due to com-
putational constraints, training our model on a
large number of random masks proved infeasible.
Secondly, since partial convolutions successively
fill the masked parts, the size of the inpainted
region is limited by the depth of the network.
Future work could therefore try to train a deeper
network to inpaint even larger regions.

7 Contributions

All group members have actively participated
throughout the whole project. More specifically,
Nico and Justin worked on implementing the
pre-processing stages of our pipeline. Wilhelm
implemented prediction and deployed our AWS
instance. Nico implemented partial convolutions
and the training stage. All members contributed
equally to the final report and poster.
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9 Code

The code for our project is available at https:
//github.com/njersch/inpainting-GAN.
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