Multilabel Classification of Restaurants Through
User-Submitted Photos

Kaan Ertas, Neval Cam

Stanford University

March 20, 2019

Abstract

In this paper we examine the Yelp Photo Classification
Challenge[9] on Kaggle, which presents a dataset of user
submitted photos of restaurants and 9 possible labels
for each business. The task is to predict, from several
photos per business, what subset of labels apply to each
business. We tackle this multi-instance, multi-label
problem by utilizing convolutional neural networks with
different approaches to handle data imbalance and the
problem of weakly labeled data. Using these methods
that can easily be transferred to other similar problems,
we achieve an F1 score of 0.80 — close to the highest F1
score achieved on Kaggle which was 0.83.

1 Introduction

Through the popular online and mobile application
Yelp, users can explore and review restaurants for other
users to see. Restaurants can provide information about
themselves by using labels that are presented under a
section called "More Business Info" on Yelp’s user inter-
face. Labels like "outdoor seating" or "good for kids"
help users find restaurants with desired qualities. Fur-
thermore, users can also upload photos of the business,
its food and its ambience. The uploaded photos may
provide a useful basis for the business labeling described
above. By analyzing the photos uploaded for a business,
one may extract the labels assigned. Aside from being
an intellectually challenging question, it can aid both
restaurants and Yelp to establish truthful, useful and
less human-intensive restaurant profiles.

Yelp released a dataset on Kaggle for a competition
with these purposes. We analyze photos of restau-
rants submitted by users from this dataset that was
released for Yelp’s competition and assign predeter-
mined labels to the restaurants. Different photos of
the same restaurant provide different insights, and au-
tomated extraction of higher-level information about
places from photos is useful for large-scale location-
based software such as Yelp, Google Maps, Zomato,
TripAdvisor, Airbnb etc.

We propose to use a deep convolutional neural net-
work with a weighted loss function and custom thresh-
olds for each label. The input to our algorithm is an
image, and the output is a 9-dimensional vector of val-
ues in the range (0,1), each value corresponding to the
prediction of a label. Predictions for businesses are
then made by aggregating the output labels for the
photos associated with the businesses through different
approaches described in the paper.

2 Related Work

Multi-instance learning tasks are different in nature
to strongly labeled supervised learning tasks. As men-
tioned by Carbonneau et al. [4], we have multiple bags
(in our case, businesses) and instances associated to
these bags (images). A straightforward to get labels
for each instance, labels of the bags (businesses) are
assigned to each instance (image) in that bag. This ap-
proach allows the use od conventional image recognition
algorithms.

Zhou et al. have proposed[11] two supervised learn-
ing algorithms for multi-instance multi-label problem
instances, an example which is the business classifi-
cation problem at hand. The two algorithms MIML-
BOOST and MIMLSVM decompose the problem in
two different ways and then utilize already existing
machine learning algorithms. MIMLBOOST first re-
duces the multi-instance multi-label classification prob-
lem into multiple independent multi-instance single-
label learning problems. This is done by turning each
learning example (multi-instance bag) (X @, y®), with
k output labels and s examples in the bag, into k
bags [(X©,y{")]..[(XD, 4] where [(X®), ")) =
{(X@r y§)) (X D=, 4{7)}. The algorithm then uses
MIBOOSTING proposed by Xu and Frank|[8], which is
a multi-instance single-label learning algorithm that av-
erages over all training examples for a bag and optimizes
likelihood for the bags. When predictions are made,
the predictions for each label can be collected to pro-
duce an overall labeling for the example. MIMLSVM,
on the other hand, reduces the problem into several



single-instance multilabel problems. The algorithm first
performs k-medioids clustering on the multi-instance
bags using Hausdorff distance, then uses the same dis-
tance metric to represent the bag as a k-dimensional
vector of distances. The representation vectors are then
used to perform SVM binary classification on each label,
which reduces the problem to several single-instance
single-label problems. The underlying assumption is
that the input vectors for the algorithm can be reliably
compared with a spatial distance metric. Predictions
are made by aggregating the predictions of the SVM
classifiers corresponding to each label.

MIMLBOOST makes two major assumptions: that
labels are uncorrelated, and that a multi-instance pre-
diction can be made by averaging all examples in the
multi-instance bag. The assumption that labels are un-
correlated may not be warranted in our current problem;
for example, in our training dataset, labels "good for
dinner" and "takes reservations" have correlation 0.64,
while labels "restaurant is expensive" and "good for
kids" have correlation -0.57, and most correlation values
are greater than 0.3 in magnitude (Fig. 2). MIMLSVM
assumes that a spatial distance metric is valid for the
examples; this assumption, however is not valid for the
input format in our problem, which are images. This
hurdle can be overcome by producing vector embed-
dings for images where a spatial distance metric would
be valid, which may be used by the algorithm.

Yosinski et al. [10] demonstrate that earlier futures
in a trained deep neural network are not task-specific
and can be transferred to different problems, especially
in computer vision tasks. Also demonstrated is that the
transferability of features is better when the distance
between the base and target tasks is small. Simonyan
and Zisserman [6] argue that specific very deep and large
convolutional neural network architectures perform well
on large-scale image recognition tasks, as demonstrated
by their success in ILSVRC 2014. Using a specific
architecture proposed in the paper, known as VGG19,
and using pre-trained weights on the ImageNet database
can be a valid approach to our problem since the base
task (classification of objects in the ImageNet database)
is close to the target task of labeling images, which is
largely dependent on the objects that appear in the
image.

3 Dataset and Features

The dataset Yelp provided has images submitted by
users for 2000 restaurants. The dataset consists of a
map of business IDs to photo IDs, a map of business
IDs to business labels, and images for training and test
sets[9]. The restaurants (but not individual images) are
each labeled with a subset of the following tags:

Figure 1: Sample images from our dataset, with business
labels "good for dinner", "good for lunch", "has outdoor

seating" and "has alcohol" respectively

outdoor " has
seating

go0d for | good for
lunch | dinner

Ihas table [ambience is | good for
alcohol| service | classy | kids

good for lunch 1 -0.35 -0.37 0.04 -0.37 |-0.33 | -0.49 -0.38 0.41

-0.08 0.51 0.53 0.5 0.53 -0.53

good for dinner | 035 | 1 064
takes

reservations

-0.37 | 064 1 -0.01 | 056 | 064 | 063 058 -0.52

outdoor seating | 0.04 | -0.08 | -o0.01 1 003 | 004 | -01 ° -0.05

restaurant is

expensive -0.37 | 051 0.56 -0.03 1 0.44 0.4 058 -0.57

has alcohol -0.33 0.53 0.64 0.04 0.44 1 0.58 0.46 -0.49

has table service| -0.49 0.5 0.63 -0.1 0.4 0.58 1 0.42 -0.43

ambience is

038 | o 58 58 .46 | o. -0.
sy 038 | 053 05 ° 058 | 046 | 042 1 052

good for kids 0.41 =0.53 =0.52 =0.05 -0.57 |-0.49 | -0.43 =0.52 1

Figure 2: Correlation matrix for labels

1) good for lunch
3) takes reservations
5) restaurant is expensive
7) has table service
9) good for kids
The challenge is that photos do not have specific
labels attached to them, but the businesses do. The data
set also has different numbers of photos for restaurants,
and there are duplicate photos. However, the duplicate
photos will not affect the training process, and removing
duplicates is a much more computationally difficult task
than processing the duplicates. Both a blessing and a
curse of this task is that different photos will contain
information regarding different labels, eg. a photo of
food gives us different information than a photo of the
restaurant’s entrance.

2) good for dinner
4) outdoor seating
6) has alcohol
8) ambience is classy

The dataset originally had 2000 businesses and
~234,000 images for the training set. Due to lack
of computational power and time, we are training our
model on 1000, validating on 32 and testing on 32 busi-
nesses with 32 randomly selected images for each. This
results in data sets of 32,000, 1024 and 1024 images for



training, validation and testing respectively.

In order to prepare the data for our models, we pre-
processed each image in our dataset. First, we reshape
them to 224 by 224 pixels with 3 color channels giving
an array of (224, 224, 3) for each image. We then nor-
malize each channel to the interval (0,1). This helps
the algorithm learn faster and allows for finer tuning of
the learning rate hyperparameter.

4  Methods

4.1 Multi-Instance Learning Consider-

ations

Our dataset is weakly labeled, as images do not have
associated labels but the corresponding businesses do.
Therefore, as mentioned by Carbonneau et al. [4], we
assign all labels of the business to its images. The
advantage of this approach is that it allows for more au-
tomated training and the use of conventional computer
vision algorithms. The downside is that it introduces
error and noise to the labeling. Consider a business
that is labeled both "good for kids" and "has alcohol".
An individual photo from this business may show an
alcoholic drink and not have elements that suggest a
"good for kids" environment. However, this photo gets
both labels under the current approach.

In the final prediction step, we use two different
approaches to aggregate the predictions associated with
photos of the same business.

Mean: For each business, we take the arithmetic
mean for each label across it associated photos. This
approach has the underlying assumption that a business
is represented equally by all its photos. This approach
has a regularizing effect for mispredictions, but ignores
the problem above. Since not every photo will highlight
all features of a business, a sparse representation of a
feature will be missed when taking the arithmetic mean.

Max: For each business, we use the maximum values
of sigmoidal activations across all photos of the busi-
ness. This approach takes better advantage of the fact
that photos of the same business can highlight different
aspects of the business. For example, consider a busi-
ness that has alcohol, but only one image associated
with it shows alcohol being served. While the previous
approach will incorrectly predict that the label does
not apply, this approach will predict correctly. A disad-
vantage of this approach is that it is more sensitive to
individual misclassifications, and does not benefit from
the regularizing effect of 32 images per business in the
dataset.

4.2 Loss Function

This is a multilabel, multiclass classification task, since
every restaurant has a subset of the 9 possible labels.
Treating the problem as 9 separate classification prob-
lems, we can use a vectorized binary cross entropy loss

Label Frequency
good_for_lunch 0.29
good_for_dinner 0.54
takes_reservations 0.56
outdoor_seating 0.51

restaurant_is_expensive 0.31
has_alcohol 0.68
has_table_service 0.73
ambience_is_classy 0.34
good_for_kids 0.57

Figure 3: Frequency of labels in training dataset

for each label:

N
7) 1 i i < (;
v.9) =% Z Dlog(§@) + (1 — y)log(1 — )]

4.3 Weighted Loss Function

Some data exploration reveals that the dataset is imbal-
anced, and that some labels appear much less frequently
than others.

Due to the imbalance, training algorithms with equal
weighted loss for each label results in poor performance
in the underrepresented labels. Therefore we use a
weighted loss function:

N
K 1 i NG i .
L(y,9) = 5 D_wi+ [yPog(@™) + (1 = y)log(1 - §'

i=1

Where w is an n-dimensional stochastic vector, with
each entry corresponding to the weight of the label. In
order to emphasize the learning of underrepresented
labels, we assigned a higher value to weights whose
corresponding labels appeared less frequently in the
training dataset. After experimenting with different
weights, we found the following to work best:

[0.17, 0.07, 0.09, 0.11, 0.18, 0.08, 0.08, 0.14, 0.08]

These weights reflect the imbalance of the data, with
labels indexed 0, 5 and 7 being the most infrequent and
hardest to classify.

4.4 Custom Thresholds

Another way to combat underrepresented data is to
use different thresholds for each label when making the
final predictions.

This problem is apparent when we look at the values
output by the baseline-CNN for the first label, almost
all of which are in the range (0,0.35). Using a threshold

?)



of 0.5 for this label causes all predictions for this label
to be 0, which neglects the variations among activations
that are squeezed into an interval but nonetheless vary
greatly when normalized.

Since we are using a sigmoid activation at the last
layer and using binary crossentropy loss, we can assume
that the model will learn to output higher values for
labels whose ground truth is 1 (label applies). Thus,
if a label appears in x% of the training data, then
we can expect the top x% of the training prediction
activation values output by the model for that label
to correspond to photos that possess that label. We
propose the following algorithm to set thresholds:

Result: Returns array of custom threshold values
for each label

Initialize empty array of thresholds;

for each label | do

Determine the frequency f of 1 in the training
data sets;

Predict the training data set;

Take predictions for 1;

Sort the predictions for | in ascending order;

Determine the (1-f)*100 percentile of the sorted
predictions ;

Append the percentile to the thresholds array

end

Algorithm 1: Custom Thresholds

Although there will not be a one-to-one correspon-
dence between the data points whose outputs are at the
top x% and the data points whose true values are 1 for
that label, this algorithm still provides a good heuristic
for the threshold value that needs to be applied.

4.5 Evaluation Metric
For each label, we apply the F1 metric, which is the

harmonic mean of precision and recall:

2
1 1

precision recall

Fl=

As the overall evaluation metric, we use the mean F1
score computed over all 9 labels. This is the metric
used by Kaggle for their challenge leaderboard.

4.6 Baseline Model

As a baseline, we created a simple convolutional neu-
ral network (b-CNN) with 2 convolutional layers and
3 fully connected layers, followed by a sigmoid out-
put. The model was trained on the training set for 10
epochs, with an Adam optimizer and a minibatch size
of 512. This minibatch size was preferred since stochas-
tic gradient descent would not be taking advantage of
vectorization, but we did not have sufficient memory
and computational speed to run gradient descent on
the entire batch.

Training vs Validation Loss

-0.056

-0.058

-0.060

Loss

-0.062

-0.064

-0.066

2 4 6 8 10
Epochs

Figure 4: Training and validation losses of VGG19 with
weighted loss (note the scale on the y-axis)

pool2
pool2
vz
fc 4096
+
fc 4096
i
fc 4096

pool2

3x3 conv, 64
)

3x3 conv, 64
[
¥

3x3 conv, 128
¢

3x3 conv, 128
|
*

3x3 conv, 256
4

3x3 conv, 256
+

3x3 conv, 256
T
0
+

3x3 conv, 512
!

3x3 conv, 512
i

3x3 conv, 512
I
+

3x3 conv, 512
¥

3x3 conv, 512
+

3x3 conv, 512
T
+

Size:224

Size:112
56
Size:1d

Figure 5: VGG19 architecture

On the test set, to represent the business predictions,
we used the arithmetic mean of the outputs for the
32 images corresponding to the business, and used a
threshold value of 0.5 for each label.

4.7 Transfer Learning with VGG19

Instead of training a large CNN from scratch, we em-
ployed a pre-trained state of the art model, VGG19.
The weights were trained on the ImageNet dataset,
which includes copious images of food and room set-
tings. This makes the weights appropriate for our task.
To use transfer learning, we removed the final softmax
layer and inserted a fully connected 9-neuron sigmoid
layer. We froze the training on all layers except the
last 3 fully connected layers. This allows at once to
use the feature extraction properties inherited by the
pre-trained weights, and to fine-tune the last few layers
to our specific dataset. We further trained the VGG19
network for 10 epochs, with and without the custom
loss weighting. For each resulting network, we predicted
the training dev and test sets using the mean and max
aggregation techniques discussed above.

5 Results

In this section, we will go through our results for each
experiment presented in section 4 and discuss the re-
sults.

5.1 Baseline Model

b-CNN resulted in a mean F1 score of 0.59. The F1
score was 0 for the label "good for lunch", due to
the absence of positive predictions. The model also



TRAIN DEV TEST
Mean | Max | Mean | Max | Mean Max
b-CNN 048 | 0.72 | 0.40 | 0.72 0.35 0.62
VGG19 070 | 0.69 | 0.59 | 0.68 0.68 | 0.65
VGG19-CT 0.86 0.66 | 0.74 | 0.68 0.80 0.63
VGG19-CT-CL | 0.90 | 0.67 | 0.72 0.68 | 0.80 | 0.63
VGG19-CL 0.75 0.70 | 0.58 0.70 0.63 0.65

Figure 6: Mean F1 scores for various architectures and
methods

performed poorly on label "restaurant is expensive",
with an F1 score of 0.22. This signals the possibility
that those two labels are harder to train, and that a
threshold of 0.5 might not be appropriate for all labels.

5.2 Transfer Learning with VGG19

For gradient descent, having higher learning rates causes
our loss to converge to a certain high value after some
number of epochs and having lower learning rates slows
the learning process. After experimenting with several
learning rates, we discovered 0.000001 works best for
our case. With no weighted loss and a 0.5 threshold,
we achieved a mean F1 score of 0.68 using the mean
aggregation method.

5.3 Weighted Loss Function

Applying our weighted loss function with transfer learn-
ing with VGG19 (with the mean technique) resulted
in training F1 score to increase by 7%. However, we
also observed that F1 scores for our validation and test
sets dropped when we used the weighted loss function
(again with the mean technique). This shows us that
the weighted loss function is prone to overfitting our
training set when using the mean aggregation technique.

5.4 Custom Thresholds

Applying our custom threshold algorithm, we observed
18% increase in our mean F1 score for test set when
we did not apply the weighted loss function. With our
weighted loss function this increase went up to 27%
since initial application of weighted loss decreased the
F1 score. Since mean F1 scores for training, validation,
and test sets all increased proportionally, we can con-
clude that we are not facing the overfitting problem we
had when weighted loss function was applied. Thus,
this method was drastically more successful than the
weighted loss function method.

6 Conclusion/Future Work

We have tackled Kaggle’s Yelp Photo Classification
Challenge by employing transfer learning with a VGG19

convolutional neural network. Due to the multi-instance
and multi-label nature of the problem, we used a
weighted loss function that reflected the data imbalance,
custom thresholds for each label and two different aggre-
gation methods for weakly labeled data. Our algorithm
that used a weighted loss function, custom thresholds
and an arithmetic mean photo aggregation technique
achieved a mean F1 score of 0.80, performing close to
the winner of the Kaggle competition.

With more time and computational resources, possi-
ble areas of further research could be simply training the
algorithm on the entire dataset, expanding our dataset
using various data augmentation techniques(eg. flipping
images), applying transfer learning with different archi-
tectures(eg. Inception-Resnet-V2), employing attention
models, and modularizing our approach to recognize
features in photos (eg. using machine learning to rec-
ognize features such as the presence of bottles, which
may be a strong indicator of the label "has alcohol").

7 Contributions

Both authors took equal part in the formulation of the
problem, data preprocessing, algorithm implementation
and report writeup processes. Special thanks to Sarah
Najmark for her guidance and help.

8 Code

GitHub Repository Link:
https://github.com /kaanertas/yelp-photo-
classification

References
[1] arXiv:1802.04712

[2] C., Wei-Hong. “Yelp.” How We Use Deep
Learning to Classify Business Photos Yelp,
engineeringblog.yelp.com /2015/10 /how-we-use-
deep-learning-to-classify-business-photos-at-
yelp.html.

[3] Chollet, Frangois. "Keras." (2015).

[4] Marc-André Carbonneau, Veronika Cheplygina,
Eric Granger, Ghyslain Gagnon, Multiple instance
learning: A survey of problem characteristics and ap-
plications, Pattern Recognition, Volume 77 (2018),
Pages 329-353.

[5] Scikit-learn: Machine Learning in Python, Pe-
dregosa et al., JMLR 12, pp. 2825-2830, 2011.

[6] Simonyan, Karen, and Andrew Zisserman. "Very
deep convolutional networks for large-scale image
recogunition." arXiv preprint arXiv:1409.1556 (2014).



7]

18]

191

Tsoumakas, Grigorios and Katakis, Ioannis. (2009).
Multi-Label Classification: An Overview. Interna-
tional Journal of Data Warehousing and Mining. 3.
1-13. 10.4018/jdwm.2007070101.

Xu, Xin, and Eibe Frank. "Logistic regression and
boosting for labeled bags of instances." Pacific-Asia
conference on knowledge discovery and data mining.
Springer, Berlin, Heidelberg, 2004.

Yelp Restaurant Photo Classification | Kag-
gle, www.kaggle.com/c/yelp-restaurant- photo-
classification.

[10] Yosinski, Jason, et al. "How transferable are fea-

tures in deep neural networks?." Advances in neural
information processing systems. 2014.

[11] Zhou, Zhi-Hua, et al. "Multi-instance multi-label

learning." Artificial Intelligence 176.1 (2012): 2291-
2320.



