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Abstract

This report presents an end-to-end approach for ar-
chitectural style classification of building facades
with modern deep learning techniques. Our ap-
proach uses transfer learning to extract feature
vectors from images of buildings and uses a neu-
ral network to map those features to class labels,
achieving an overall test accuracy of 75.7%. Ad-
ditionally, we present human error results, several
weaknesses in an existing dataset for the task, and
preliminary results from a follow-up approach
that uses object detection to help alleviate the
problem of mixed architectural styles.

1. Introduction

Ground-truth classification of architectural styles can be
highly subjective. Architectural historians have considered
architectural “style” from many different perspectives—the
term can be used to group together buildings by particular
visual traits or by cultural trends and building strategies
that may be invisible on the surface (Hopkins, 2014). The
existence of buildings which combine elements of multiple
styles or defy easy classification further complicates the
task.

To approach the task, we first assume the ground truth of
an existing dataset (Xu et al., 2014). Specifically, we first
seek to solve the problem defined by the creators of this
dataset: classifying an image of a building facade into one
of 26! architectural styles such as Byzantine, Romanesque,
or Tudor Revival (see Figure 1). But as we will see, several
problems with the original dataset and with the nature of
the learning task hearken back to the complexities of archi-
tectural style classification. Concretely, besides presenting
a model to solve the original task, we 1) discuss several
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weaknesses in the original dataset created by Xu et al. and
2) briefly propose and present preliminary results for an
object-detection-based extension which addresses the prob-
lem of detecting multiple styles in the same building facade.
To the best of our knowledge, this work is the first instance
of modern deep learning techniques applied to this specific
classification task.

The next section outlines related work. The following two
sections present our end-to-end approach, results, analysis,
and issues with the original dataset. The section after that
presents an approach for finer-grained style classification.
Finally, we conclude and suggest further work.
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(a) Byzantine (b) Romanesque (c) Tudor Revival
Figure 1. Architectural Styles. Three sample building facades

and their styles.

2. Related Work

Prior to 2016, work in the classification of architectural style
or architectural elements was based on traditional machine
learning approaches or on approaches with hand-selected
features. Work by Shalunts focused on classifying vari-
ous architectural elements into a small sets of classes using
hand-crafted features and clustering (Shalunts et al., 2011;
2012a;b; Shalunts, 2015). Others took a graph-based ap-
proach to extract visual patterns for a similar problem in
architectural image classification (Chu & Tsai, 2012) . Two
other studies used modern machine learning techniques, al-
though their approaches were not end-to-end and did not
use ConvNets (Xu et al., 2014; Zhang et al., 2014).

Modern deep learning was first used in 2016 to classify a
hand-crafted dataset of Mexican historical buildings into
one of three classes (Obeso et al., 2016), creating models
architectures from scratch and comparing their performance
to AlexNet, although this work did not acknowledge the
problem of eclecticism/mixed styles in classification. The
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following year, another work also applied modern deep
learning and transfer learning techniques to classify archi-
tectural elements into their identity (window, pillar, etc.)
(Llamas et al., 2017), and Chris Pesto trained three Con-
vNets to classify the architectural styles of images from
Zillow for a CS231N final project (Pesto, 2017). In 2018,
deep learning was applied to classify architectural elements
by architect (Yoshimura et al., 2018).

Despite existing similar work, ours appears to be the first to
apply modern deep learning techniques to the exact prob-
lem defined by Xu et al. in 2014, and one of the few to
acknowledge the problem of mixed styles.

3. Methods
3.1. Data

We extended a publicly available dataset built by Xu et al.
(2014) for our experiments. The original dataset had 25
classes of architectural styles such as Russian Revival, Post-
modern, Bauhaus, and so on — it was gathered by recursively
scraping Wikimedia’s page on ”Architecture by Style.” We
added 259 images of “no architectural style” to obtain a
total of 5,053 images. See Table 1 for the count distribution
among classes. All images (except the “no architecture”
class) contain only building facades, and exclude any inte-
rior decorations or severe scale and orientation changes. All
images are in RGB format. Image resolutions range from
300 x 200 to 3000 x 4000, with most images around a 800
x 600 resolution — all images are resized to 224 x 224 for
training and evaluation.

Split. Because our dataset is not very large, we split it
randomly into 70% train, 20% dev, and 10% test sets. We
ensured that the class distributions remained the same in
each of the train, dev, and test sets.

Data Augmentation. We augmented each original image
in the dataset with horizontal flipping, rotations of -15, -5,
5, and 15 degrees, and four random crops. This increased
the size of the original training set by 10x.

3.2. End-to-end classification

Figure 2 shows our final end-to-end architecture. We use a
pretrained MobileNet V2 (Sandler et al., 2018) architecture
trained on ImageNet (Deng et al., 2009) as an image feature
extractor. The MobileNet V2 extractor takes images of size
224 x 224 and outputs 1792 features. We pass these 1792
features into two fully-connected layers of size 500 and 26,
the first with a ReLU activation and the latter with Softmax.
Figure 3 shows our choice of loss function.

We use an Adam optimizer with a learning rate of 0.001, a
batch size of 256, L; regularization with A\; = 1 x 1075,
and dropout with a keep-probability of 95%. We ended up

MobileNetV2

‘ 1792 features ‘

!

‘ FC 1792 x 500 w/ Dropout ‘

FC 500 x 26

Class Probabilities

Figure 2. End-to-end architecture. We use a MobileNet V2 ar-
chitecture trained on ImageNet to extract features from images of
building fagades and a neural network to map those features to a
probability distribution over style class labels.

1
Cross-Entropy Loss = m E [— fy +log E efj]
(z,y)eD J

Total Loss = Cross-Entropy Loss + A\ L1 (W) + A2 Lo (W)

Figure 3. Loss function. We minimize the cross-entropy loss as
it is standard for softmax outputs — we explored using L1 and L3
regularization to help mitigate overfitting. Here D is our dataset,
x is an example image, y is its style label, f; is the value of the
j-th entry of the class scores vector for the current training exam-
ple z, and W is the set of weights in the post-feature extraction
neural network. We do not backpropagate into the weights of the
pretrained architecture.

setting our Ly parameter to zero, but did explore its use. We
use TensorFlow (Abadi et al., 2015) for all our experiments.

3.3. Hyperparameter Tuning and Architecture Search

The final architecture described in the previous section was
the result of a thorough hyperparameter and architecture
search. We tested five different pretrained image feature
extractors with our task, including a ResNet variant (He
et al., 2016), Inception V3 (Szegedy et al., 2015), and a
large NASNet (Zoph et al., 2017) architecture, but it was
MobileNet V2 that achieved the highest dev accuracy on
a preliminary experiment (75%, compared to about 70%).
This result, together with fast training times and the idea
that an architectural classifier could be useful on mobile
devices, made MobileNet V2 the go-to architecture for the
rest of our experiments.
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(a) Loss. (b) Accuracy

Figure 4. Loss and accuracy curves. The loss and accuracy
curves for the final model — dev set accuracy increases rapidly in
one epoch, but then tapers off, remaining below train set accuracy.
Despite experimenting with L1, Lo, and dropout regularization,
as well as data augmentation, we could not improve this variance
with the existing dataset.

Having fixed MobileNet V2 as our feature extractor, we
used a random search to tune the learning rate, batch size,
number of fully-connected layers (1 to 4) in our output
neural network, the coefficients of L; and Lo regularization,
and whether or not to use batch norm and what momentum
to use with it. Lastly, we took the best sets of parameters
from this experiment to tune the keep probability of dropout
between fully-connected layers, which gave us our final
architecture?.

The vast majority of our experiments (even those with the
highest dev accuracy) overfit the training set to about 99.9%
accuracy. This meant that the feature extractor gave rich
enough features for our algorithms to overfit the training
images. For this reason, we did not experiment with fine-
tuning the pretrained architectures and instead focused our
efforts on regularization and avoiding variance.

For comparison, we include results from a baseline CNN
model in the results section.

4. Results

Table 1 displays per-class test set performance metrics from
our own baseline CNN and our final models. The corre-
sponding train and dev accuracy and loss curves are in Fig-
ure 4.

Xu et al. reported an accuracy of 46.2% with their multino-
mial latent logistic regression approach (per-class accuracy
was not reported) (Xu et al., 2014). In comparison, we
achieved 55.4% accuracy on a baseline CNN architecture?,
and 75.7% accuracy using our MobileNetV2 transfer model.

*We ran tuning experiments for about 5 days on an AWS
p2.xlarge GPU instance.

3Our baseline consists of a series of 3x3 convolutional layers
with batch normalization, ReLU activations, and 2x2 max pool
layers. Two fully-connected layers map the final volumes into the
26 architecture styles.
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Figure 5. Test set confusion matrix. MobileNetV2 transfer learn-
ing. A few classes such as American Craftsman (class 1) have
a significant number of images classified erroneously. Most of
the American Craftsman images were classified as American
Foursquare (class 2), which is visually very similar. Similarly,
the International (class 17) style is often misclassified as Art Deco
(class 4) or Postmodern (class 20).

Figure 5 presents a confusion matrix of the fest set results
from our architecture. While our classifications are usually
correct, there are a few systematic errors apparent from the
diagram, described in the caption.

Human performance. We consulted with a trained archi-
tect* to approximate the Bayes error rate on the architectural
classification task. We presented her with all the labeled
training data (not augmented), as well as a set of 25 images
randomly chosen from the dev set with the labels removed.
All images were reduced to the resolution we gave the clas-
sifier. We asked her to classify the 25 images into styles
based on her architectural knowledge and the example data.
Her accuracy on the 25 samples was 56%. Many of her
misclassifications were similar to our model’s, with visually
similar classes mistaken for each other, like International
and Postmodern.

4.1. Discussion

Dataset and Task Limitations. The architect we consulted
with also noticed a number of images which she believed
were mislabeled, as well as systematic misclassifications.
Given that the original labels were added by Wikimedia
users, this is indeed a valid concern with the data quality.

In addition, she discussed issues with the task itself. Many
of her mislabeled images were of American architecture,
which, especially in the late 19th century, consisted of a

“Thanks to C.C. Ying.
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Baseline CNN Final Architecture
| Count | FI Precision Recall | FI Precision Recall
Achaemenid 69 61.5 66.7 57.1 72.7 100.0 57.1
American Foursquare 59 25.0 50.0 16.7 28.6 100.0 16.7
American Craftsman 195 52.9 64.3 45.0 82.1 84.2 80.0
Ancient Egyptian 256 98.0 100.0 96.2 98.0 100.0 96.1
Art Deco 366 47.1 41.7 54.1 73.1 66.7 81.1
Art Nouveau 450 60.5 65.0 56.5 76.4 69.6 84.8
Baroque 239 57.8 61.9 54.2 73.1 88.2 62.5
Bauhaus 92 28.6 50.0 20.0 52.6 55.6 50.0
Beaux-Arts 191 50.0 56.3 45.0 55.6 62.5 50.0
Byzantine 111 20.0 25.0 16.7 81.8 90 75.0
Chicago School 153 514 474 56.3 69.2 90 56.3
Colonial 177 37.2 32.0 444 77.4 92.3 66.7
Deconstructivism 213 50.0 41.2 63.6 83.7 85.7 81.8
Edwardian 79 43.5 333 62.5 71.4 83.3 62.5
Georgian 154 47.1 444 50.0 66.7 64.7 68.8
Gothic 109 55.6 71.4 45.5 73.7 87.5 63.6
Greek Revival 327 65.7 64.7 66.7 80.0 71.4 90.9
International 207 53.7 55.0 52.4 53.3 88.9 38.1
Novelty 212 51.3 58.8 45.5 89.4 84.0 95.4
Palladian 113 43.5 455 41.7 58.3 58.3 58.3
Postmodern 163 44.4 60.0 353 571 48.0 70.6
Queen Anne 425 64.8 53.8 81.4 81.8 80.0 83.7
Romanesque 107 50.0 55.6 45.5 70.0 77.8 63.6
Russian Revival 165 48.6 45.0 529 84.2 76.2 94.1
Tudor Revival 162 29.6 40.0 23.5 62.2 50.0 82.4
No Architecture 212, 87.0 100.0 76.9 98.0 100.0 96.1
Overall | 5,053 | 55.1 57.4 55.4 | 75.3 78.3 75.7

Table 1. Results. Per-class counts and result metrics for our baseline and final model — we present standard F1, Recall, and Precision
metrics. The best and worst few F1 scores for each model are underlined and bolded, respectively. Globally, Xu et al. (2014) reported
46.21% accuracy on a test set of 1,716 images across the 25 original architecture styles. Our baseline CNN'’s global accuracy was 55.4%,

and our best approach’s accuracy was 75.7%.

mix of styles which elude easy classification into one cate-
gory. She described one building in particular as a “bizarre”
amalgam of styles (Figure 6).

Indeed, our model reflects these two problems. The test set
confusion matrix reveals that American Foursquare build-
ings were more often classified as American Craftsman
than not. One possibility is that many of the American
Foursquare images are actually mislabeled and could more
canonically be considered American Craftsman buildings.
Another possibility is that some of these buildings embody
elements of both styles, and that due to the greater number
of American Craftsman examples in the training set, these
mixed buildings default to American Craftsman. One exam-
ple of this phenomemon is shown in Figure 7 along with a
true American Craftsman house. Additionally, we observe
that a few images labeled as Art Deco and Art Nouveau are
classified as each other, corroborating her observation that
Art Deco and Art Nouveau images often seem mistaken for
each other in the dataset.

Ultimately, our classifier’s accuracy appears high given the
limitations of the dataset as reflected in human error, and

many of our classifier’s mistakes may be explained away by
data irregularities or inherent task difficulties.

Figure 6. Eclectic Architecture. An example of a “bizarre” build-
ing from the training set, with a mix of architectural styles. The
dataset labeled it as Tudor Revival, with which our expert dis-
agreed.

5. Fine-Grained Classification

To begin to address the problem of buildings with mixed
styles, we implemented an approach that leverages object de-
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(a) American Foursquare (b) American Craftsman

Figure 7. American Craftsman and American Foursquare. On
left, a supposedly American Foursquare building misclassified as
American Craftsman. On right, a correctly classified American
Craftsman house. Our model had difficulties distinguishing be-
tween the two styles, and our human expert expressed concerns
that some exemplars of each in the dataset were not sufficiently
unique to the labeled style.

tection as an intermediate step in the classification pipeline.
While a traditional deep learning approach gives a single
label to an entire image without explanation and without
finer-grained analysis, our intuition was that breaking the
image down into its components and classifying those could
yield a more nuanced analysis of building style.

Generating elements dataset. First, we took the original
architectural style classification dataset, and used an object
detection architecture (Huang et al., 2017) trained on the
Open Images (Krasin et al., 2017) dataset to extract objects
from each image. We extracted objects from a list of classes
relevant to architectural classification (e.g. Sculpture, Door,
Window, Tower, Stairs, etc.) and only took objects classified
with higher than 50% confidence (see Figure 8). This pro-
cess resulted in a new “elements” dataset with 4,822, 1,401,
and 712 examples in the train, dev, and test set respectively.

Experiments with elements dataset We used the same ar-
chitecture and a similar training regime as for the original
approach to learn a classifier for architectural elements. This
achieved an 66.9% test accuracy on this new dataset. Fig-
ure 8 shows an example style classification output of the
pipeline.

6. Conclusion

In this work we presented an end-to-end architectural style
classification model that achieves 75.7% test accuracy,
outperforming a human expert (56.0%), a baseline CNN
(55.4%), and previous work (46.2%). At the same time, we
illuminated some inherent shortcomings with the problem
itself: not only may our existing dataset be inaccurately
labeled, but the task itself is often intractable, as buildings
are not always neatly classifiable into a single architectural
style. Crafting an expert-curated dataset with annotated

(b) Door (c) ‘House’

(d) Window

Figure 8. Sample output from elements pipeline. We extracted
architecture-related objects from images automatically to generate
an elements architectural style dataset. In this eclectic example,
the overall image was classified as Queen Anne, while the door
was classified as Georgian, the ‘house’ Novelty, and the window
American Craftsman.

building features would address both of these outstanding
issues and is the logical next step for future work.

Lastly, as a prelude to these future directions, we present
early results from an object-detection-based classifier to pro-
vide finer-grained architectural style classifications. Such
a nuanced approach to architectural style classification is
more akin to how architects themselves would likely ap-
proach the task, and appears to be a promising avenue for
future work.

7. Code and Contributions
7.1. Code

Our code can be found in this public GitHub repo: https:
//github.com/alanefl/archclass/.

7.2. Contributions

Paavani performed and wrote about data augmentation,
found and added the 26th ‘no architecture’ images to the
dataset, and designed the final poster.

Alan wrote the scripts to fetch and prepare the dataset for
training, coded the architectures, ran all hyperparameter
tuning experiments, and built the object detection extension.
Alan also prepared most of the report except results and the
conclusion.

Alex wrote code for both global and per-class metric mea-
surement as well as confusion. Alex also refactored some of
the training and model code. Alex’s code also utilized Ten-



Deep Architectural Style Classification

sorBoard to display sample misclassified images for error
analysis. Alex prepared the human version of the classifica-
tion task, interviewed the architect, and wrote up the results
and conclusion of this report.

References

Zillow. https://www.zillow.com/.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software
available from tensorflow.org.

Chu, W.-T. and Tsai, M.-H. Visual pattern discovery for ar-
chitecture image classification and product image search.
In Proceedings of the 2nd ACM International Conference
on Multimedia Retrieval, pp. 27. ACM, 2012.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. CoRR, abs/1603.05027, 2016.
URL http://arxiv.org/abs/1603.05027.

Hopkins, O. Architectural Styles : A Visual Guide.
Laurence King Publishing, 2014. ISBN 9781780671635.
URL https://stanford.idm.oclc.org/
login?url=https://search.ebscohost.
com/login.aspx?direct=trues&db=nlebks&
AN=926206&site=ehost-1live&scope=site.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, 1., Wojna, Z., Song, Y., Guadarrama, S.,
et al. Speed/accuracy trade-offs for modern convolutional
object detectors. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 7310—
7311, 2017.

Krasin, I., Duerig, T., Alldrin, N., Ferrari, V., Abu-El-Haija,
S., Kuznetsova, A., Rom, H., Uijlings, J., Popov,
S., Kamali, S., Malloci, M., Pont-Tuset, J., Veit, A.,
Belongie, S., Gomes, V., Gupta, A., Sun, C., Chechik, G.,
Cai, D., Feng, Z., Narayanan, D., and Murphy, K. Open-
images: A public dataset for large-scale multi-label and
multi-class image classification. Dataset available from

https://storage.googleapis.com/openimages/web/index.html,
2017.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,

pp. 10971105, 2012.

Llamas, J., M Lerones, P., Medina, R., Zalama, E., and
Goémez-Garcia-Bermejo, J. Classification of architectural
heritage images using deep learning techniques. Applied
Sciences, 7(10):992, 2017.

Obeso, A. M., Benois-Pineau, J., Acosta, A. A. R., and
Vazquez, M. S. G. Architectural style classification of
mexican historical buildings using deep convolutional
neural networks and sparse features. Journal of Electronic
Imaging, 26(1):011016, 2016.

Pesto, C.  Classifying u.s. houses by architectural
style using convolutional neural networks. Not pub-
lished, Stanford CS 231N final report, 2017. URL
http://cs231ln.stanford.edu/reports/

2017/pdfs/126.pdf.

Sandler, M. B., Howard, A. G., Zhu, M., Zhmoginov, A.,
and Chen, L.-C. Inverted residuals and linear bottlenecks:
Mobile networks for classification, detection and segmen-
tation. CoRR, abs/1801.04381, 2018.

Shalunts, G. Architectural style classification of building
facade towers. In International Symposium on Visual
Computing, pp. 285-294. Springer, 2015.

Shalunts, G., Haxhimusa, Y., and Sablatnig, R. Architec-
tural style classification of building facade windows. In
International Symposium on Visual Computing, pp. 280—
289. Springer, 2011.

Shalunts, G., Haxhimusa, Y., and Sablatnig, R. Architectural
style classification of domes. In International Symposium
on Visual Computing, pp. 420-429. Springer, 2012a.

Shalunts, G., Haxhimusa, Y., and Sablatnig, R. Classifica-
tion of gothic and baroque architectural elements. In 2072
19th International Conference on Systems, Signals and
Image Processing (IWSSIP), pp. 316-319. IEEE, 2012b.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer
vision. CoRR, abs/1512.00567, 2015. URL http://
arxiv.org/abs/1512.00567.

Xu, Z., Tao, D., Zhang, Y., Wu, J., and Tsoi, A. C. Architec-
tural style classification using multinomial latent logistic

regression. In European Conference on Computer Vision,
pp. 600-615. Springer, 2014.



Deep Architectural Style Classification

Yoshimura, Y., Cai, B. Y., Wang, Z., and Ratti, C. Deep
learning architect: Classification for architectural de-
sign through the eye of artificial intelligence. CoRR,
abs/1812.01714, 2018. URL http://arxiv.org/
abs/1812.01714.

Zhang, L., Song, M., Liu, X., Sun, L., Chen, C., and Bu,
J. Recognizing architecture styles by hierarchical sparse
coding of blocklets. Information Sciences, 254:141-154,
2014.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
CoRR, abs/1707.07012, 2017. URL http://arxiv.
org/abs/1707.07012.



