CS230

Cooperative-Competitive Multi-Agent Learning
in Soccer Environments

Christopher Covert Cameron McMillan Patipan Pipatpinyopong
cwcovert@stanford.edu cmacl2@stanford.edu pipat001@stanford.edu
Abstract

Inspired by multi-agent cooperation, we are investigating the use of multi-agent
deep reinforcement learning networks to play simple cooperative games. This
project utilizes a simulated soccer environment developed by Unity to test a suite
of deep reinforcement learning algorithms against each other in a simple game
benchmark. In the 2 vs 2 player format, where each team is equipped with a
striker (offensive agent) and goalie (defensive agent), we explore how agents can
learn to be simultaneously collaborative and competitive. To avoid the influence
of consecutive examples’ strong correlations and interdependence, a randomized
experience replay scheme was used to train the networks. We explored the training
result between Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO),
each with small variations during training.

1 Introduction

Motivated by the use of deep reinforcement learning in multi-agent control, our team is applying
deep-RL techniques to train agents to learn collaborative tasks. To do so, we are working in a Unity
soccer environment with two agents on each team. A team consists of a goalkeeper and striker were
trained with the goal of achieving “human-level” control. This work lends itself to related multi-agent
settings such as team pursuit/evasion, formation control, and coordinated object manipulation.

The input to our system uses experience replay which stochastically samples a mini-batch from a
buffer of previous state-action-reward outcomes to train the deep network. Taking this sample can
stabilize the input dataset by decoupling the influence of the immediately preceding samples from
the current test. We then use a series of modified DQN and PPO models to output an action-state
pair sequence that simulates the game of soccer between two teams of two agents. The results of this
game output a reward value that is used to train further iterations during the training round.

Success is measured by the cumulative number of wins, draws, and loses of a team. The different
models will be trained and compared against each other in a series of consecutive matches.

2 Related work

Deep Q-Network (DQN)

Deep Q-learning is a model-free reinforcement learning techniques that learns a Q-function used to
find the best action of a given state. This function is approximated through a deep neural network,
however, convergence issues may arise. To improve upon DQN, (1) uses experience replay and
reward clipping to stabilize multi-agent collaborative formation control from sensory input. In a
pursuit/evasion environment, (3) demonstrates the capabilities of a Multi-Agent Deep Q-Network

CS230: Deep Learning, Winter 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Figure 1: Soccer Simulation Environment in Unity

(MADQN) through centralized training process. The work in (4) applied leniency to overcome
outdated stored experience and found that Lenient-DQN (LDQN) models converge to optimal policy
quicker than modified Hysteretic-DQN (HDQN) algorithm. The authors in (5) showcases the power
of DQN on Atari 2600 games by comparing Deep-RL results with expert human-level performance.
(6) and (7) build from the Atari 2600 results by improving the over-estimations of (5) by implementing
Double DQN and Dueling DQN models, respectively and demonstrated improved performance. (8)
adds Prioritized Experience Replay to the Double DQN algorithm which changes the sampling
distribution when there is a large error in prediction.

Proximal Policy Optimization (PPO)

Used to showcase that learning-based algorithms can play actor-critic games, (9) uses PPO against
the Atari 2600 benchmarks to show that PPO outperforms standard online policy gradient methods
and is a suitable baseline for Deep-RL tasks as a result of its balance between sample complexity and
algorithm simplicity. From this work, the authors in (10) apply TRPO to the Atari 2600 benchmark
tests and found that it results in monotonic improvements as compared to human and baseline DQN
results. This work was further extended by the authors of (2), which used a modified policy-scaled
Trust Region Policy Optimization (PS-TRPO) method to simulate cooperative multi-agent control in
the pursuit/evasion game.

Unity Deep-Reinforcement Learning

As for the environment, the developers at Unity published (11), which outlines the RL branch of the
Unity game engine and their creation of a general platform for intelligent agents. From this work,
(12) implements a baseline PPO model in the soccer Deep-RL Environment from which served as
the inspiration of our PPO baseline. This previous attempt was limited to running PPO, and was the
reason our team pursued a comparison with several modified DQN models.

3 Dataset and Features

We have a Unity-based environment which is a bounded rectangular soccer field as seen in Figure
1. Our baseline is a 2 vs 2 setup, each team consisting of a single goalkeeper and a striker agent.
Each role has a defined reward function summarized in Table 1. Each game lasts until the maximum
number of steps is reached or one team scores. The penalty on the striker for existing rewards the
striker for ending games quickly to motivate the striker to score quickly. The opposite is true for the
goalie because longer games mean that neither team has scored.

Table 1: Agent Reward Function Definitions

Agent Brent —
Ball Enters Opponent’s Goal | Ball Enters Own Team’s Goal | Existing

Striker +1 -0.1 -0.001

Goalie +0.1 -1 +0.001

The action space is slightly different between the striker and keeper. The striker has 6 possible actions:
forward, backward, left, right, clockwise rotation, and counterclockwise rotation. The keeper has
only four possible actions: forward, backward, left, and right. As for the state space, each agent
obtains a 336 element observation vector, that corresponds to 7 rays within the 180 degree view from
the front of the agent, with 6 sets of rays stacked in the vertical direction. Each ray consists of 8
values: binary classification of seven possible object types and the object’s distance from the agent.
The action of each agent in one time step is then communicated directly to the Unity environment
based on the policy as a function of the current state.

The dataset for training this model utilizes an experience replay method, meaning that the input set is
generated at the time of training.

4 Methods

To provide an intelligent baseline for our DQN tests, we leveraged a repository (12) that has imple-
mented PPO (see Algorithm 1) to train agents in the soccer environment that we’re working with

).

Algorithm 1: Proximal Policy Optimization
Input: initial policy parameters 6y, initial KL penalty (3, target KL-divergence §
for k=0,1,2,... do

Collect set of partial trajectories Dy on policy mx = m(0k)

Estimate advantages /A\:”‘ using any advantage estimation algorithm

Compute policy update

01 = argmax Lo, (0) — Bk Dre (6]16x)

by taking K steps of minibatch SGD (via Adam)
if DKL(0k+1||0k) > 1.56 then

Br+1 = 2Bk
else if DKL(0k+1||0k) < 6/15 then
Brs+1 = Bi/2
end if
end for

While the model is a standard PPO implementation, tuning of the hyperparameters was necessary
to achieve desired learning parameters. The following hyperparameters were used to train the PPO
baseline: batch size is 32, epsilon is 0.1, gamma is 0.995, 2 hidden layers, 256 neurons in the first
layer, 128 neurons in the second, learning rate of 8e-6 for the goalie, and learning rate of 1e-4 for the
striker.

As a comparison point to a baseline PPO model, we explored various DQN implementations with
different reward structures to see how they performed against each other and the PPO benchmark.
The DQN algorithm with experience replay that was implemented as described in Algorithm 2.

As for hyperparameters used to train the baseline DQN model, we used a replay buffer size of 1e5,
minibatch size of 64, discount factor () of 0.99, soft update of target parameter (7) of le-3, learning
rate of Se-4, and update iteration count of 4 sessions.

As for the structure of the DQN model, it has three linear fully-connected layers of (the two hidden-
layers having 256 and 128 units, respectively). Both layers also have Relu activation functions. This
is a standard representation of a DQN.

From the best baseline of DQN that our team was able to train, we varied the reward structure into
four versions that are explained in further detail in the following section.

5 Experiments/Results/Discussion

To evaluate the algorithm performance, we first trained a baseline DQN model and a PPO model
using the reward structure summarized in section 4. These trained models were evaluated against a
team that acts completely at random.

Algorithm 2: Deep Q-Network with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x, } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a, =argmax, Q(¢(s;),a: 0)
Execute action a, in emulator and observe reward r, and image x; ;
Set s, =s;,a;,%;+ and preprocess ¢, ., =¢(s41)
Store transition (¢,,a..r,¢,,,) in D
Sample random minibatch of transitions (4>,.a',,r',.</>H 1) from D

rj if episode terminates at step j+ 1
ooy rj+7 maxy ‘Q((/j,+ 14 ()’) otherwise

Perform a gradient descent step on (},’. — Q((/),.a,: ())) "~ with respect to the
network parameters 0
Every C steps reset 0=0
End For
End For

Then we altered the reward structure and retrained the DQN models to see how that affected the
test performance of the algorithm. First, a reward of +0.3 was added to strikers when they "hit" the
ball. Additionally, a penalty of -0.03 was added whenever the striker cannot observe the ball in its
observation space. This was intended to help the striker locate and approach the ball, then explore
the rewards based on state-action combination near the ball. This change in reward was applied to
trained versions 1, 2, and 3. Additionally, we introduced the "modified" versions of each of these
strikers by removing the penalty of not observing the ball. Since the goalie was limited to the smaller
state space and has a smaller action space, no intermediate reward was added.

On top of introducing intermediate rewards, we also varied the penalty on the striker when the
team gets scored on. This was intended to explore behaviors that may emerge. For Version 1, the
striker receives the original reward outlined earlier where scoring a goal rewards +1 and -0.1 penalty,
corresponding to a "neutral" striker that focuses on scoring and may play some defense. Version 2
corresponds to an "aggressive" striker that receives reward of +1 for scoring and 0 penalty if the team
gets scored on. In this case, we expected the agent to try to do whatever it can to score a goal. Lastly,
Version 3 corresponds to a "defensive" striker that gets reward of +1 for scoring and penalty of -0.6 if
it gets scored on.

Each trained model was tested against one another and against agents that take random actions.
Table 2 summarizes the win and not-lose percentages after testing for 500 games. Overall, we see that
the DQN algorithm performed better, specifically Version 1 modified and Version 2. Both models
fared well against random players, however, at 75-80% win rate, we believe that there is room for
improvement. First, we observed an interesting behavior where all versions of DQN agents would be
"stuck" without commanding any actions in certain situations. We suspect this behavior as a result
from not learning the entire Q function. An extreme example of this is our baseline DQN model
where the striker does not move at all and constantly tries to move backwards. This explains the not
lose result of 100% when it was tested against itself.

After testing Version 3 against, random and baseline DQN, we observed poorer performance and
did not continue to test the model. It became apparent that a defensive striker is not a good strategy
within this environment. Similarly, when we trained PPO models with intermediate ball reward, we
actually saw worse performance and did not complete the entire test set in the interest of time. In
addition, we saw that the PPO striker consistently scores on its own goal.

Overall, the goalie performed well across all trained models. One interesting observation was that if
the ball comes to rest in the goalie box where neither strikers could enter, the goalie would choose to
do nothing and let the time run out, resulting in a draw.

Based on the success of Versions 1 and 2 of DQN models, we applied the same learning technique in
a 3 vs. 3 agent environment which includes one goalie and two strikers on each team. We expected
the intermediate reward to help with training, however, we were not able to get the model to converge.

Table 2: Evaluation Result for 2 vs. 2 Environment

Win (W) and Not Lose (NL) % Against:

Model Random | DQNj.se | DQN; | DQN7°? | DQN: | DQN5*°? | PPOpgse
DON,, W: 13% W: 0% W:18 % W: 14% W: 5% W: 10% W: 21%
%€ 1 NL:81% | NL:100% | NL:32% | NL:41% | NL:38% | NL: 59% NL: 55%
DON;, W: 66% W: 68% W: 31% W: 23 % W: 28% W: 37% W: 63%
NL: 70% | NL:82% | NL:62% | NL:49% | NL:48% | NL:57% | NL: 68%

DQNm"d W: 79% W: 59% W: 51% W: 40% W: 41% W: 45% W: 77%
L NL: 85% | NL:86% | NL:77% | NL:63% | NL:63% | NL: 75% NL: 81%
DON, W: 77% W: 62% W: 52% W: 37% W: 41% W: 48% W: 70%
NL:81% | NL:95% | NL:72% | NL:59% | NL:62% | NL:76% | NL:77%

DQNm"d W: 53% W: 41% W: 43% W: 25% W: 24% W: 39% W: 49%
2 NL: 74% | NL:90% | NL:63% | NL:55% | NL:52% | NL:59% | NL:71%
PPO, W: 53% W: 45% W: 32% W: 19% W: 23% W: 29% W: 46%
ase NL: 70% | NL:79% | NL:37% | NL:23% | NL:30% | NL:51% | NL: 58%

6 Conclusion/Future Work

Multiple variants of DQN agents and PPO agents were trained in the 2 vs. 2 soccer environment.
Initially, the PPO model was observed to perform much better when tested against random agents and
against one another. Intermediate rewards were then introduced to help with training DQN models
and it showed significant improvement. One interesting result seen is that it is not clear whether the
penalty on the striker when it does not see the ball would help the agent perform better or not. We
were able to see that the more aggressive strikers performed better in this game overall. We also
found that introducing intermediate reward actually hurt the performance when training PPO models.

With more time and resources, interesting future work includes further fine tuning of the reward
structure and general hyperparameters to reach near 100% not lose rate against randomly acting
agents. As mentioned in the results, the goalie tends to "hog" the ball when it can, which doesn’t quite
resemble cooperative behavior. Training a more "aggressive" goalie may overcome this behavior.
Furthermore, we would like to expand the problem to include more agents, less environmental
boundaries by removing walls, more complex agent roles, and have different models trained against
each other. Because all models in this work were trained against agents acting completely at random,
we expect that training against skilled agents would help improve learning performance. Lastly, there
are other deep reinforcement learning methods to be explored such as double DQN, dueling DQN,
and imitation learning.

7 Contributions

The code for this project can be found at https://github.com/ppipat/Multi-Agent-Soccer. The PPO
code is in the PPO branch of this repository.

Christopher Covert - Developed Unity models, created Unity framework for 3 vs 3 environments,
and drafted the initial poster and report for final submission.

Cameron McMillan - Setup and tuned PPO models, setup PPO and DQN running on Amazon, and
ran algorithm performance tests.

Patipan Pipatpinyopong - Setup DQN models for this environement. Applied intermediate reward for
training.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Conde, Ronny, José Ramén Llata, and Carlos Torre-Ferrero. "Time-varying formation con-
trollers for unmanned aerial vehicles using deep reinforcement learning." arXiv preprint
arXiv:1706.01384 (2017). https://arxiv.org/ftp/arxiv/papers/1706/1706.01384.pdf

Gupta, Jayesh K., Maxim Egorov, and Mykel Kochenderfer. "Cooperative multi-agent control us-
ing deep reinforcement learning." International Conference on Autonomous Agents and Multia-
gent Systems. Springer, Cham, 2017. http://ala2017.it.nuigalway.ie/papers/ALA2017_Gupta.pdf

Egorov, Maxim. "Multi-agent deep reinforcement learning." (2016).
http://cs23 1n.stanford.edu/reports/2016/pdfs/122_Report.pdf

Palmer, Gregory, et al. "Lenient multi-agent deep reinforcement learning." Proceed-
ings of the 17th International Conference on Autonomous Agents and MultiAgent Sys-
tems. International Foundation for Autonomous Agents and Multiagent Systems, 2018.
https://dl.acm.org/citation.cfm?id=3237451

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., and Petersen,
S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529.
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

Van Hasselt, H., Guez, A., and Silver, D. (2016, March). Deep reinforcement learn-

ing with double g-learning. In Thirtieth AAAI Conference on Artificial Intelligence.
https://arxiv.org/pdf/1509.06461.pdf

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas, N. (2015).
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581.
https://arxiv.org/pdf/1511.06581.pdf

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. arXiv
preprint arXiv:1511.05952. https://arxiv.org/pdf/1511.05952.pdf

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347. https://arxiv.org/abs/1707.06347

Schulman, J., Levine, S., Abbeel, P, Jordan, M. I, and Moritz, P. (2015,
July). Trust Region Policy Optimization. In Icml (Vol. 37, pp. 1889-1897).
http://proceedings.mlr.press/v37/schulman15.pdf

Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018). Unity: A
General Platform for Intelligent Agents. arXiv preprint https://arxiv.org/pdf/1809.02627.pdf.
https://github.com/Unity-Technologies/ml-agents

Marcello Borges GitHub Repository. https://github.com/marcelloaborges/Soccer-PPO

