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Abstract—The task of kinship verification from photos, namely
determining whether two people are related given input images
of each person, has use cases in areas ranging from com-
bating human trafficking to conducting non-invasive paternity
tests. Recently, techniques leveraging deep learning have shown
improvements in handling this task; however, despite recent
advances in the field of face recognition, performance on the
kinship verification task has begun to stagnate, perhaps indicat-
ing the presence of a high Bayes error for this task. This work
demonstrates that by using state-of-the-art generative models to
transform the input faces to the same age, the error on this task
can be reduced for CNN-based kinship verification algorithms in
a model-agnostic way.

I. INTRODUCTION

Kinship verification is the task of determining whether
two people are blood relatives. This task has a variety of
uses including fighting human trafficking, verifying paternity,
and improving our understanding of human genetics and
inheritance. Currently kinship verification is performed
using genetic tests that are expensive, long, and require
physical DNA samples. Computational methods for kinship
verification based on photographs aim to alleviate these
problems while simultaneously allowing researchers to better
understand the hereditary properties of particular facial features.

Past approaches for kinship verification from photographs
have been limited by the availability of large and diverse data-
sets. It can also often be difficult, given the limited data-set, to
isolate which features of a photo are due to the effects of aging
and which are biological markers that could aid in verifying
kinship. With these two problems in mind, we propose a novel
architecture to improve on the current state-of-the-art in kinship
verification. The input to our algorithm is two images from the
Families in the Wild (FIW) database. These images are then
aged to be the same age by a generative model before being
sent to a CNN that encodes the images and determines whether
they belong to two relatives. This process aims to minimize
the effects of age-related features and by coupling it with the
FIW database, which is the largest kinship database to date, we
believe we will be able to improve upon the state-of-the-art.
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II. RELATED WORK

A. Work prior to FIW

Prior to the release of the FIW data-set, the state-of-the-
art in kinship verification was primarily focused on tackling
specific sub-problems, such as identifying Father-Daughter(FD)
relationships. Zhang et al. [1] combined the techniques of
metric learning with deep learning to identify non-linear
features and were able to attain reasonable (= 70% accuracy)
on the KVII dataset. However, this approach was limited to
only a few "simple" relationships such as Father-Daughter,
and the dataset neglected looking at relationships with more
generational differences (Grandfather-Granddaughter) or non-
direct hereditary connections (Siblings). Other work, most
notably the work of Lu et al. [2], utilized metric learning
to obtain high-quality kinship verification results in 2015.
However this again did not take advantage of a more expansive
dataset and also required a similarity metric that had to be
heavily tuned to achieve proper performance.

B. After FIW

There is still a large amount of work to be done using the
FIW data-set due to its recent release. However, within their
original paper, Robinson et al. provided a simple approach
to kinship verification using various CNNs and the FIW
dataset [3]. They implemented a variety of algorithms for the
image-unrestricted problem (where the IDs of the images
are known) and found the SphereFace algorithm [4] [5] to
perform the best. However this still only attained an overall
accuracy of 69.18%. Other work on the dataset includes
SelfKin, the winner of the first FIW challenge in 2018 [6].
They utilized a novel form of self-adjusted weights to improve
the detection of facial features and were able to attain an
accuracy of 68.20% averaged across all relationship categories
for the image-restricted problem (where the IDs of the photos
are unknown). These two results currently comprise the
state-of-the-art in the field and indicate that perhaps the Bayes
Error for the task of estimating kinship between two images
of different ages is inherently high. This in turn motivated us
to look into facial aging techniques to modify the inputs to
the problem and potentially create an "easier" problem.



C. Aging for Kinship Verification

Lastly, just to further motivate our methodology it is
important to note that past work has also been done using
facial aging to improve the accuracy of kinship verification.
[7] [8]. These papers demonstrated that converting the two
photos to be the same age did yield improved classification
performance. However, they both utilized style transfer to age
the photos, which required the presence of an intermediate
data-set of "young photos" of the parents. This is therefore
not applicable to data-sets without multiple images of the
parents or in situations where the relationships are closer in
age and therefore such intermediate photos are not available,
such as Brother-Sister. By using FIW and more advanced aging
algorithms that incorporate GANs, we aim to take this same
concept but apply it with fewer constraints to improve on the
state-of-the-art.

III. DATASET AND FEATURES

Families in the Wild (FIW) is an open-source database
released by Robinson et al in November 2018, designed specif-
ically for the tasks of kinship verification and classification [9].
The database contains more than 10,000 family photos from
more than 1,000 families.

A selection of 163 different families was generated from [9]
due to some of the families in the dataset not being publicly
available. This dataset contains 50,000 pairs of 224x224 RGB
images with each pair consisting of two images, some from
the same family and some not. The dataset was split into
training/dev/test sets with the following proportions:

o Training set: 153 families,

e Dev set: 5 families

o Test set: 5 families

Because the training will utilize the triplet loss, the training
set is composed of triplets (anchor, positive and negative) while
the dev and tests sets are composed of pairs and a label of
"kin" or "not kin". Examples of these are shown in figures 1
and 2. All pictures are normalized by 255.

Overall, the training set contains 46,735 triplets, the dev set
contains 3,276 pairs, and the test set contains 1,558 pairs.

(c) Negative

(a) Anchor

(b) Positive

Fig. 1: One example of the training set

IV. METHODS
A. CNN

The core of this implementation is the convolutional neural
network (CNN). A CNN is a specific form of neural network
that utilizes mathematical operations known as convolutions.

(a) Picture 1

(b) Picture 2

Fig. 2: One example of the dev set with label = 1

These operations allow the network to take in high-dimensional
inputs (such as images) and process them more efficiently
than a standard neural network would by leveraging shared
parameters between parts of the image as well as utilizing
more sparsely-connected layers. For this paper, we focused on
using the CNN to generate encodings for each image and then
comparing the image encodings against a threshold € in order
to assess kinship probability.

1) A note on Transfer Learning: Since the focus of
the paper was originally to demonstrate state-of-the-art
kinship verification performance, the preliminary plan was
to utilize transfer learning on the SphereFace algorithm [4]
and fine-tune the later layers using the FIW dataset since
this was the implementation used by the authors of the FIW
paper. However, due to the lack of documentation on their
specific implementation, there was difficulty in replicating the
results from that paper and achieving similar levels of dev set
accuracy. As a result, it was decided to use a simplified form
of the SphereFace algorithm and build it from the ground up
for the purpose of assessing the relative benefit of the GAN.
Future work will involve fully implementing the SphereFace
algorithm with the GAN front-end in order to hopefully attain
state-of-the-art performance on this task.

2) The triplet loss: The loss function was chosen to be
a simple triplet loss that minimizes the distance between an
anchor image and an image from within the anchor’s family
while maximizing the distance between the anchor and an
image from outside the anchor’s family. More specifically:

o The CNN ’s output is a vector of 128 elements encoding
the input.

« Each example of the training set is a triplet (three different
images): an anchor encoded as A, a positive encoded as P
(belonging to the anchor’s family) and a negative encoded
as N (not belonging to the anchor’s family).

o The triplet loss is : L(A, P, N) = max(||A—P||3—||A—
N||%2 + a, 0) where « is a hyperparameter.

o The dev and tests sets consist of two pictures (encoded
as P1 and P2) and one label (the label is 1 if the people
belong to the same family and O otherwise). The distance
between the encodings P1 and P2 is computed. If it
is sufficiently low i.e. ||enc(P1) — enc(P2)|3 < ¢, P1
and P2 are predicted to belong to the same family. This
introduces another hyperparameter e.



3) Detailed presentation of the CNN: Using this loss
function, a simple CNN inspired by [4] was trained to generate
an encoding given an input image:

o 64 filters (3,3) with stride 2 and valid padding. RELU
activation function,
o 128 filters (3,3) with stride 2 and valid padding. RELU
activation function,
o 256 filters (3,3) with stride 2 and valid padding. RELU
activation function,
o 512 filters (3,3) with stride 2 and valid padding. RELU
activation function,
o Fully connected layer towards a 512-element output vector,
 Fully connected layer towards a 128-element output vector.
This vector is normalized. This vector is the encoding of
the input
Once the encodings were computed, it is then necessary to
compute the best threshold e. This is a value such that if the
L2 distance between an image’s encoding and the encoding of
another image in its family is below €, the model predicts that
they are related. e was chosen to maximize the accuracy on
the dev set. If I/, is the encoding of the first image in a pair
then:

D = |||E1 — E2|||?, D < e = samefamily

B. Face-Aging Algorithm

The second part of our implementation was a Generative
Adversarial Network (GAN). This is a network trained in
"competition" against a discriminator until it is able to fool
the discriminator and produce images with a high enough
quality. At the end of training, the discriminator should be
randomly guessing as to whether its inputs were generated
by the GAN or come from real data. Two state-of-the-art
generative algorithms for face aging were trained and used to
age the faces for this project. The details on both are below:

1) CAAE: One of the models used was the Conditional
Adversarial Auto-Encoder (CAAE) [10] which can be found
at [11]. This network uses an encoder (E) to encode the input
image, which is then fed into a generator (G) that aims to
create an aged face by propagating certain features of the
image. Two discriminators labelled D, and D;mg act to
validate the encoding and the output image respectively and
train both. The result is a network that is capable of both
aging forward (progression) and backward (regression). One
downside is that it has a normalizing effect on the features of
the face, which can sometimes remove identifying features of
the image.

2) IPCGAN: The second algorithm used was the Identity-
Preserved Conditional GAN (IPCGAN) [12] which can be
found at [13]. A conditional GAN (c-GAN) is a GAN
architecture that generates images that meet a certain criteria.
This algorithm used age as the condition and also imposed a
loss function dependent on whether the identity of the person
in the image was preserved as well as whether an age classifier

predicted the correct age from the generated image. This
algorithm achieved high performance on a dataset of celebrity
images but the downsides are that it can only age forward
in time and the dataset it was trained on primarily contained
photos of adults.

V. EXPERIMENTS/RESULTS/DISCUSSION
A. Training of the CNN

In the original paper, the benchmark using a full
implementation of the SphereFace CNN achieved only a
69.13% test set accuracy. This coupled with the fact that the
maximum achieved training set error for our task was only
84% indicates that this is likely a hard problem with a high
Bayes error. This makes reasonable sense since it is also a
task that is very difficult for humans to do with 70% accuracy.
Therefore, the algorithm was considred to be sufficiently
trained if it achieved approximately 70% training accuracy.

1) CNN Hyperparameters:

a) The learning rate: The learning rate was chosen to be
le=5. Every 5 epochs, it is divided by 5. This was empirically
chosen to prevent overshooting and to ensure that the cost
keeps decreasing.

b) The threshold e: This was specific to the triplet loss
and was re-computed after each simulation in order to maximize
accuracy on the dev set.

c) The triplet loss hyperparameter «: This parameter
needs to be more than 0. It was empirically selected at « = 0.4
after multiple tests.

d) Number of epochs: 5, 10, 20 and 30 epochs were all
attempted. As shown on Table I, for a training set of 20000
examples (mini-batch size of 128), the test accuracy after
20 epochs is 54.8 % (training accuracy is 81 %) whereas
it is 57.7 % after 5 epochs (training accuracy is 68 %).
In other words, when the number of epochs is increased
beyond 5, the training accuracy increases and the test accuracy
decreases.This indicates overfitting. Note that the dev set
accuracy is approximately constant because the hyperparamater
€ is chosen to maximize accuracy on the dev set. Overfitting
was avoided using the early stopping method and only training
up to 5 epochs. The resulting 57.7% test accuracy is acceptable
since similar simplistic algorithms in the original FIW paper
also achieved 55-60% test accuracy.

Number of epochs Dev set Training set Test set
accuracy [%] | accuracy[%] | accuracy [%]
30 54 84 56.4
20 56.1 80.7 54.8
10 55.4 76 56
5 53.6 67.9 57.7

TABLE I: Early stopping

e) Mini-batch size: Mini-batches of size 32, 64 and 128
were tested on 20000 training examples and with 5 epochs. The
results are shown in the Table II. If the mini-batch size was
higher than 256, the computation was too slow: with numpy
matrixes of dimensions (256, 224, 224, 3) almost throwing a



memory error. Since each picture is present several times in
the training set, the result is that updating the parameters more
often (with a small mini-batch) could increase overfitting: this
explains the results in Table II. Thus, the mini-batch size was
chosen to be 128 to avoid overfitting. The results presented in
the Table II are for a training of 5 epochs on 20000 examples.

Mini-batch size Dev set Training set Test set
accuracy [%] | accuracy[%] | accuracy [%]
32 52.8 75 53.8
64 55.1 75 55.1
128 53.6 67.9 57.7

TABLE II: Mini-batch search

2) Results of the CNN: The final hyperparameters used for
training with 20000 examples are shown in Table III.

Hyperparameter Value
Learning rate 1E -5
Threshold 1.19
a 0.4
Number of epochs 5
Mini-batch size 128

TABLE III: Hyperparameters

For the hyperparameters presented in Table III, the accuracy
was 53.6% on the dev set, 67.9% on the training set and 57.7%
on the test set. On the test set, the precision is 60.1% and the
recall is 48.9% The confusion matrix is presented in Table IV.

Predicted [%]

True | False

T 248 | 259

Labeled [%] F;lsz 16.4 | 329

TABLE IV: Confusion matrix

B. Training the Generative Networks

1) CAAE: In implementing the CAAE, first the weights
were initialized using a very early checkpoint model and then
were trained using 23,708 images from the UTKFace dataset
[14]. This is a high-quality dataset of images across ages
which makes it ideal for the purpose of training a face-aging
network. This would also allow us to be able to use the FIW
dataset as our "test set" to assess the quality of the final aging.
The training happened using AWS on a g3.4xlarge instance
and took around 6:40:12 to run with an epoch size of 20, and
a mini-batch size of 100. The learning rate was chosen to be
0.0002 and the (3; value for the Adam optimizer was set at 0.5,
both according to the original paper. The one hyperparameter
that had to be tuned most heavily was mini-batch size. Due
to memory constraints, mini-batches greater than 500 were
not possible. However, too low batch size values took too
long to run. Ultimately the best results were achieved using a
mini-batch size of 100. Figure 4 below shows the final results
of training.

e X

(a) Input Image to CAAE
A 5 Dy &

g1 -
(b) Output image from CAAE

Fig. 3: Input and Output images to CAAE with 20 epochs of
training. Each column represents a different person while each
row represents a different age group, ranging from 0 to 70
years old in increments of 7 years.

e = =

Fig. 4: Outputs from IPCGAN

2) IPCGAN: Due to time constraints, the IPCGAN was
initialized with checkpoint weights provided by the authors of
the paper which were then used to convert the images from
the test set. The only hyperparameter selected was the number
of age groups which was eventually chosen to be 5 to produce
the best aged outputs. An example of these outputs can be
seen in Figure 4.

C. Merging the Model

With the model trained using the parameters from section A
above, the test set was run again but with the data pre-processed
by the GANs such that the two people in each pair of test
images were generatively aged into the same "age category".
For the CAAE, each age category represents approximately
a 7 year range from age 0 to 70. For the [IPCGAN each age
category represents approximately a 10 year age increase from
the original age. The results for each GAN and each "age
category" are presented in Table V.

Table V indicates that aging the photos does have a positive
effect on the accuracy of the Kinship Verification algorithm.
The best accuracy is achieved by aging the images down to
Category 2 using the CAAE, which corresponds to what is
expected. Without pre-processing the algorithm achieved a test



Pre- Age Age Accuracy | Precision | Recall
processing | category | [years] [%] [%] [%]
None - - 57.7 60.1 48.9
1 0-7 56.7 56.5 63.7
2 8-14 60.4 60.7 62.1
3 15-21 58.8 59.6 58
4 22-28 60.2 61.6 57.1
5 29-35 59 60.9 532
CAAE 6 3642 | 588 606 | 536
7 43-49 58.7 61.6 49.1
8 50-56 56.3 58.6 46.9
9 57-63 56.5 58.8 47.3
10 64-70 553 57.7 44.1
1 +0 57.1 59.3 48.9
2 +10 57.1 59.8 46.9
IPCGaN 3 20 | 570 609 B3
4 +30 56.7 60.7 41.4
5 +40 57.6 63.1 394

TABLE V: Results with Preprocessing

accuracy of 57.7%, a precision of 60.1% and recall of 48.9%.
With pre-processing, it is able to obtain an accuracy of 60.4%
(CAAE GAN - 2nd age category), a precision of 63.1% (IPC
GAN - 5th age category) and recall of 63.7% (CAAE GAN -
Ist age category).

It is also of note that when the model is made to overfit
the non-processed data, while the performance on the
non-processed test set suffers, the performance on data aged
with the CAAE GAN achieves higher accuracy and precision.
Choosing the same parameters as in Table III but using a mini-
batch size of 64 and a threshold € = 0.74 causes the model to
overfit and results in a a dev set accuracy of 55.1%, a training
set accuracy of 75%, a test set accuracy of 55.1% without
pre-processing. However, once the test data is preprocessed
through the CAAE and set to age category 2, the accuracy is
increased by 7% (up to 62.5 %) and the recall by 16% (up
to 47%). For the 5th age category, the precision is increased
by 9% (up to 69.7 %). These results can be viewed in Table VL.

An explanation for this could be that when the model overfits,
it decreases the bias of the model but also hurts the variance.
However, since the CAAE has a smoothing effect of sorts it
means the processed test set inherently has less variance (i.e.
encodes more "basic" features) than the original test set. This
means the effect of decreasing the overall bias of the model
outweighs the effect of the lower generalizability of the model
caused by overfitting. It is important to note that the recall is
still relatively low, indicating that the model fails to classify
many true pairs as kin. This is likely because the encodings
are overfitting the training set too heavily which in turn means
fewer unprocessed test set pairs are meeting the "standard
of similarity" learned by the model. However, like described
above, the smoothing effect of the CAAE likely leads to more
simplistic encodings that have fewer outlier features which
in turn causes a large jump in recall performance when the
images are pre-processed.

Pre- Age Accuracy | Precision | Recall
processing | category [%] [%] [%]
None - 55.1 61.1 31.3
1 57.3 60 47
2 62.5 68.9 47
3 60.7 66.5 45.3
4 61 67.6 443
S 61 69.7 40.8
CAAE 6 6T 604 | 412
7 59.2 67.2 38.0
8 59.6 68.3 37.9
9 57.8 64.6 37.0
10 56 62.4 33.1

TABLE VI: CAAE pre-processed data applied to an overfitted
model

VI. CONCLUSION/FUTURE WORK

Overall, from Tables 5 and 6 it can be seen that the
generative algorithms add between 3-5% to test set accuracy
and therefore confirm the hypothesis. Specifically, the highest
accuracy is achieved by the CAAE scaling the images down
to Age Category 2 (approximately between 7 and 14 years
old). This is in line with our hypothesis since this increase in
accuracy is likely due to age-related features being "smoothed
out" by making the images younger. The drop in accuracy
between Category 2 and Category 1 is likely because at
Category 1, the features are so heavily smoothed by the CAAE
that the encodings are inherently similar. This leads to a large
amount of false positives as indicated by the low precision
for that run. However, CAAE Category 1 did maximize recall
due to this high encoding similarity which may be useful in
situations where one may hope to avoid false negatives (such
as paternity tests).

One surprising result is that the highest precision was
actually achieved through aging forward using the IPCGAN
and Age Category 5. This is likely because the IPCGAN
preserves a large amount of individually-distinct features that
inherently makes the encodings more different. Therefore,
while many "harder" family pairs may be marked as false
negatives, it ensures that those classified as "kin" are more
likely to be so. This would be more useful for tasks, such as
human trafficking detection, where false positives should be
minimized.

One area of future work is to implement this pre-processing
on the full SphereFace model and try to achieve state-of-the-art
accuracy through this method. Another area of future work
would be to incorporate an age estimator in the loop. This
would allow for more interesting aging policies that could be
explored, such as aging both images in a pair to the average
age of the pair, or aging both images to the age of the younger
image. Lastly, it would also be interesting to look further into
formalizing a way to overfit the CNN so that it performs
better on the pre-processed dataset. This is no longer a model-
agnostic method, but it could be useful for improving model
performance in specialized applications.



VII. CONTRIBUTIONS

Zoe Ghiron worked on training the CNN, which included
building it, implementing it, and conducting the hyperparameter
search. She also wrote the helper functions to extract data
from FIW and she generated the final results using the
generatively-aged photos.

Yash Chandramouli worked on training the CAAE network
and implementing the IPCGAN. The CAAE was trained
without initial weights and required hyperparameter tuning.Both
generative networks also required multiple modifications to
core functions as well as multiple auxiliary functions in order
to meet the needs of the project.

Our Github with the code for this project can be found at
https://github.com/yashc95/old-photo-net.git [15].
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