Upscaling Audio Quality with Deep Convolutional
Networks

Daniel Semeniuta
Department of Computer Science
Stanford University
dsemeniu@cs.stanford.edu

Abstract

The field of generative modeling and within it super resolution focuses highly
on generative adversarial models. This project implements a fully convolutional
network with residual connections as proposed by Kuleshov et al. for the purpose
of audio super resolution. Additionally, I propose and implement a novel variation
on Kuleshov et al.’s model.

1 Introduction

Advancements in deep neural networks have led to the expansion of generative models and conse-
quently of super resolution, in which neural networks of varying architectures upscale low resolution
samples of various media. Applying these techniques to the super resolution of audio is one subset of
the possibilities. This project explores the problem of upscaling low quality audio samples to match
the resolution of high fidelity audio data. The impact of such a project can be found in the realm of
data compression, especially in the streaming era, as well as helping recover low quality audio data.

Specifically, I implement the model described by Kuleshov et al. [2017] in PyTorch (Paszke et al.
[2017]), as well as propose my own novel variation on their architecture. My model takes as input a
low resolution audio wav file, which is preprocessed and converted to a tensor format then upscaled
via a cubic spline, and returns a high resolution version of the same audio. The reason for the spline
upscaling is so that my input and output are of the same length in number of samples.

The input audio signal moves through a series of convolutional downsampling and upsampling blocks
with a bottleneck architecture. In each layer, the length of each sample is halved while the its depth
in terms of convolutional filters is doubled until reaching the bottleneck layer. After the bottleneck,
each upsampling block doubles the length of the sample while halving the number of filters.

2 Related work

Super resolution is a very rich niche within the field of generative modeling in deep learning.
Many different techniques have been applied to the problem of creating high resolution data from
low resolution data. Previous generative audio models have utilized recurrent structures such as
SampleRNN proposed by Mehri et al. [2016]. Their model utilizes a multi-tier, fully recurrent
architecture. Work by Li et al. [2015] proposes a deep neural network based approach for bandwidth
expansion in speech. Their model performs feature extraction on the input audio prior to passing the
features through a DNN to predict a fuller span of frequencies from the narrow band audio.

This work instead follows the trajectory provided by research done on image super resolution. Dong
et al. [2016] propose a super-resolution convolutional neural network (SRCNN) for recovering a

CS230: Deep Learning, Winter 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



Additive residual connection

Downsampling block

[ ] B Downsampling Blocks B Upsampling Blocks [ _m
| Rew |
0 [}

Q w
5 Bottleneck g :
2 el sl e = 2 Conv i
£ 8|8l 8 ] g :
£ > sls|5] PP - E Dropout :
ollalla o

g B RelU I
2 g '
n I — s DimShuffle :
Stacking residual connections Stacki ng 3

Upsampling block

Figure 1: Architecture of Kuleshov et al.’s network

high-resolution from a single low-resolution image. Their convolutional structure was designed with
simplicity at the forefront, yet outperformed many state of the art algorithms at the time.

3 Dataset and Features

The primary data utilized in this project came from the Centre for Speech Technology Voice Cloning
Toolkit (VCTK) (Veaux et al. [2017]). This corpus consists of recordings of 109 English language
speakers of various accents uttering around 400 sentences each for a total of 44 hours of audio data.
This dataset provides a simple and consistent corpus of audio to train on. The variety of accents
which is useful to speech recognition tasks provides some variety in the sound to increase difficulty
and improve the ability of the model to generalize.

Using preprocessing code provided by Kuleshov et al.’s GitHub repository!, I generated low-resolution
signals of the VCTK dataset with an order 8 Chebyshev type I low-pass filter. These low-resolution
signals were then upsampled via a baseline cubic spline method. All audio preprocessing was
performed using packages provided with SciPy (Jones et al. [2001-]) and Librosa (McFee et al.
[2019]). In the data prep stage, all VCTK data was downscaled by a factor of 4.

4 Methods

As stated earlier, I implemented both the structure suggested by Kuleshov et al., as well as my
own variation on the upsampling blocks and residual connections.? I first describe Kuleshov et al.’s
structure before discussing my variations.

4.1 Audio Super Resolution

Kuleshov et al. describe a deep convolutional network with residual connections as seen in figure
1. The network is primarily parameterized by B the number of successive downsampling and
upsampling blocks. Each downsampling block contains a convolution, batch normalization, and
ReLU non-linearity. Observing their source code, however, reveals that Kuleshov et al. did not
use batch normalization and utilized a Leaky ReLU with negative slope of 0.2 as an activation
function. In my implementation of the model, I utilized batch normalization and a leaky ReLU in
my downsampling block. Each down block b = 1,..., B contains min{26+% 512} filters of size
max{27~" 4 1,9} with stride 2 and same padding, to achieve the desired halving and doubling of
the time dimension and number of filters respectively. Due to its convolutional structure, an input of
any length can be run through the model.

After the bottleneck convolution, the upsampling blocks perform the inverse of the downsampling
blocks. The number of filters and the size of each one that the bth upsampling block has corresponds
to the number of filters and their size that the B — b + 1th downsampling block had, so that they may

"https://github.com/kuleshov/audio-super-res
2Source code can be found at https://github.com/d-semeniuta/cs230-final



match in dimensionality for the residual connection. Again same padding is used, but the stride is
of length 1 so the convolution does not reduce the time dimension. Again, a ReLU non-linearity is
applied along with a dropout layer after the convolution.

The input passed in to a given upsampling block is of size F' x d where F' is the number of channels the
signal has and d is the length of the audio input in its time dimension. At the end of the convolution,
the input is of size F'/2 x d. However, the residual from the corresponding downsampling block is of
size F'/2 x 2d. As we wish to concatenate the filters of these samples along the time dimension, we
must manipulate the dimensionality of the convolution output.

Kuleshov et al. suggest a one-dimensional version of a Subpixel layer proposed by Shi et al. [2016].
The original two-dimensional subpixel layer shuffles an input of size F' x d x d to one of size
F/4 x 2d x 2d. As PyTorch only provides a two-dimensional implementation, I implemented my
own one-dimension subpixel shuffle which transforms our convolution output from size F//2 X d to
F/4 x 2d. This output is then concatenating with F'/4 features from the downsampling residual to
form a final output of the upsampling block of size F'/2 x 2d. Though Kuleshov et al. provide no direct
hints for deciding which F'/4 features to choose from the downsampling residual, I implement this
with a linear projection. We have thus halved the number of filters and doubled the time dimension.

A final residual connection occurs after a final convolution following the upsampling blocks. This
final convolution results in a signal of the desired length and a single channel. So that the model does
not need to learn the full reconstruction of the original input signal, but simply the difference between
the low-res input and high-res prediction, there is an additive residual connection between the input
signal and the final layer.

Evaluating the quality of an audio approximation as compared to a reference high-resolution audio
sample leads to a straightforward use of a mean squared error (MSE) objective function

1 n
L=~ Z||Z/i—fe($i)||§ e))
=1

for optimizing the parameters 6 of our network f, where x;, y; are the pairs of low-resolution and
high-resolution audio in our dataset.

4.2 Audio Super Resolution V2

I propose a novel iteration on Kuleshov et al.’s model. The driving motivation is to utilize the same
logic of learning the difference between the source and the target and creating an additive rather than
a stacked residual connection between the downsampling and upsampling blocks. To accomplish
this, I double the number of filters in the convolutional layer of the upsampling blocks, so the input
after convolution is of size F' x d. Performing the one-dimensional subpixel shuffle transforms it to
a signal of size F'/2 x 2d, matching exactly the shape of the residual. In this case then, there is no
need to project the residual or choose which F'/4 channels of it to use.

5 Experiments/Results/Discussion

The model Kuleshov et al. presented utilized the number of filters and filter size stated above in section
4.1. Additionally, their tested model had B = 4 blocks. In addition to training a model utilizing
their hyperparameters, I trained larger models to improve the robustness and quality of the model. I
increased the number of blocks to B = 5 as well as increasing the maximum number of filters for
a layer to 1024. For my suggestive additive residual model, I additionally lowered the number the
initial number of filters so my model had min{2°+% 1024} filters of size max{27~" + 1, 9}. I made
this change to decrease the jump their model had from a single channel audio file at input to 128
channels in the second layer, as there may not be enough information in the signal this early in the
network.

The model parameters were optimized as stated earlier with an MSE objective by an Adam optimizer
with learning rate of 5 x 10> and 3; = 0.9, 2 = 0.999 in all variations of hyperparameters. The
models were trained for between 50-100 epochs depending on the hyperparameter initialization.

Although MSE provides a good objective to parameterize against, it is not indicative of the success of
the model. For evaluating the quality of the audio reconstruction the Signal to Noise Ratio (SNR)



Residual | Max Filter Size | B | Epochs Trained SNR LSD MSE

Stacked 524 4 50 45.8967 | 1.19825 | 4.1263 x 10~°
Stacked 524 5 50 45.9406 | 1.18799 | 3.78957 x 10~—°
Stacked 1024 5 110 48.5504 | 1.09285 | 3.27255 x 10—°
Additive 1024 5 80 45.8967 | 1.19825 | 4.1263 x 10~°

Table 1: Model Results on Validation set

40

60 60

80 80

100 100

120

120

140

160

) 200 400 600 800 1000

(a) Reference Spectrogram

60
80
100 100
120 120

140 140

160 160

200 400 600 800 1000 0 200 400 600 800 1000

)

(c) Paper Parameters Prediction (d) Additive Residual Prediction

Figure 2: Spectrograms of speaker 225 utterance 366 in VCTK corpus

and Log-spectral distance (LSD) (Gray Jr and Markel [1976]) were utilized. The SNR is a standard
metric for measuring the level of a desired signal, in this case audio, to background noise. Given a
reference signal y and an approximation y it is defined

2
SNR(z,y) = 10log LEQ )
||z —yll3
LSD measures the reconstruction quality of individual frequencies with the formulation
1o || L v
LsD(z.) = 7 3 ¢ 2o (X6 - X(m) Q)

(=1 k=1

where X and X are the log-spectral power magnitudes of y and z, respectively. These magnitudes
are defined as X = log |S|? where S is the short-time Fourier transform (STFT) of the signal x or y.
This is parameterized by the number of index frames and frequencies in the experiments, denoted by
¢ and k, respectively.

Table 1 displays the results achieved by the various models trained. Though the metrics look very

good, I believe there is a bug in my calculation of both SNR and LSD. The numbers achieved are
very out of the ordinary, but the models do not hold up to subjective listening. All predictions made



by the models, including the one utilizing Kuleshov et al.’s hyperparameters, sounded very poor
in comparison to the high resolution reference signal. Due to the very low loss and good metrics
reported during training, along with a seeming plateau, I stopped training my models far earlier than
the 400 epochs. Figure 2 displays spectrograms of the audio samples, where the y-axis representes
the frame of the signal, and the x-axis represents the frequency. It is apparent that the models do not
accurately reconstruct the higher frequencies of the reference audio signal given the low resolution
downsample.

6 Conclusion/Future Work

The model unfortunately did not succeed in reconstructing high quality audio from low-resolution
inputs. I believe bugs in the implementation of the metrics led to misleading results which further led
to stopping the models from training earlier than they should have been stopped. The model shows
extreme promise in its structure as the convolutional architecture allows for inputs of any size. In
these early results, the bigger models which trained for longer showed the most promise.

These results indicate that future work should focus on resolving the issues regarding the metrics
and simply training the model for longer. Beyond that, I would experiment with the architecture
more, utilizing different numbers of filters and different sized filters in each convolution. I would
also iterate on various hyperparameters of Leaky ReLU or experiment with a simple ReLU as an
activation function after the convolutions. Additionally, in the stacked residual model, I believe there
is a better way to reduce the F'/2 channels to F'/4 instead of a fully connected linear layer, as this
may reduce the positive effect of a residual. One-dimensional point-wise convolutions may fit better
within the fully convolutional model scheme, or simply utilizing max pooling or average pooling
with a pooling window of 2 would reduce the number of channels.

Additionally, it would be interesting to incorporate this model with other aspects of generative
modeling, such as an adversarial network.

This project is simply the start of exploration within generative audio for super resolution. There is
more work which can be done to fully realize the potential of this model and within the field.

Contributions

Alejandro Ballesteros assisted in the initial proposal and milestone stages of the project. However,
he withdrew from the course, and the code and final project write up were entirely done by Daniel
Semeniuta.

References

C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):295-307, Feb 2016. ISSN
0162-8828. doi: 10.1109/TPAMI.2015.2439281.

A H. Gray Jr and J D. Markel. Distance measures for speech processing. Acoustics, Speech and Signal
Processing, IEEE Transactions on, 24:380 — 391, 11 1976. doi: 10.1109/TASSP.1976.1162849.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001-. URL http://www.scipy.org/.

Volodymyr Kuleshov, S. Zayd Enam, and Stefano Ermon. Audio super resolution using neural
networks. CoRR, abs/1708.00853, 2017. URL http://arxiv.org/abs/1708.00853.

Kehuang Li, Zhen Huang, Yong Xu, and Chin-Hui Lee. Dnn-based speech bandwidth expansion
and its application to adding high-frequency missing features for automatic speech recognition of
narrowband speech. In INTERSPEECH, 2015.

Brian McFee, Matt McVicar, Stefan Balke, Vincent Lostanlen, Carl Thomé, Colin Raffel, Dana Lee,
Kyungyun Lee, Oriol Nieto, Frank Zalkow, Dan Ellis, Eric Battenberg, Ryuichi Yamamoto, Josh
Moore, Ziyao Wei, Rachel Bittner, Keunwoo Choi, nullmightybofo, Pius Friesch, Fabian-Robert
Stoter, Thassilo, Matt Vollrath, Siddhartha Kumar Golu, nehz, Simon Waloschek, Seth, Rimvydas



Naktinis, Douglas Repetto, Curtis "Fjord" Hawthorne, and CJ Carr. librosa/librosa: 0.6.3, February
2019. URL https://doi.org/10.5281/zenodo.2564164.

Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham Jain, Jose Sotelo,
Aaron C. Courville, and Yoshua Bengio. Samplernn: An unconditional end-to-end neural audio
generation model. CoRR, abs/1612.07837, 2016. URL http://arxiv.org/abs/1612.07837.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

W. Shi, J. Caballero, F. Huszér, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time
single image and video super-resolution using an efficient sub-pixel convolutional neural network.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1874—1883,
June 2016. doi: 10.1109/CVPR.2016.207.

Christophe Veaux, Junichi Yamagishi, and Kirsten MacDonald. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit, 2017. URL http://homepages.inf.ed.ac.uk/
jyamagis/page3/pageb8/page58.html.



