DCS230

Video Colorization

Vedi Chaudhri Yang Fang
Stanford University Stanford University
Department of Computer Science Department of Computer Science
vchaudhr@stanford.edu yangfang@stanford.edu
Abstract

This project attempts to apply deep learning to grayscale video colorization. One current video
colorization technique is to independently color individual frames using an image colorization
neural network. This method, however, leads to temporal inconsistencies in the coloring of
consecutive frames. This project proposes additionally encoding the last previously colorized
frame as input to help colorize the current frame in a more positionally consistent manner.

1 Introduction

This project explores deep learning methods for the colorization of grayscale videos. Video colorization is an
Interesting problem with potential applications for many areas, with the one that comes to mind immediately
being the automatic colorization of old black-and-white movies. Video colorization could also prove useful for
improving or replacing video compression algorithms, since RGB colored videos use three channels to store
information whereas grayscale videos only require storing a single channel. So if a platform needs to store
information in color video format, it could potentially store it more compactly as a grayscale video and then later
convert it to a colored video when it is retrieved.

In order for this to be possible, however, algorithms for video colorization need to be improved. Currently, there
exist neural networks that can color black and white images with relatively realistic results. This is primarily done
through the use of convolutional neural networks due to their ability of sharing parameters and having sparse
connections. Each frame of the video can be seen as a black and white image that needs to be colored. But the task
of realistically colorizing a video is more complex because it requires that the relative position and context of each
frame be taken into account. When coloring independent frames using a pretrained image colorization network,
certain objects might be colored differently in different frames even though it is the same object. For this reason,
to more realistically colorize a video, frames must be colored relative to one another. Instead of independently
processing each frame, this project experiments with methods of recolorization that consider the relation of
different frames and the relative context of each video frame when performing image colorization.



2 Related Work

The problem of grayscale video colorization has been studied by several other researchers. The first part of video
colorization is independently coloring each frame. This common approach to solving this has been utilizing a
CNN and posing this as a classification task using class-rebalancing at training time to increase the diversity of
colors in the result [4]. The image colorization task is extended to colorize videos as seen in the paper “Consistent
Video Colorization” [2]. For their project workflow, they examined N previous frames of a video in order to
better recreate a relational basis for coloring the current frame. Their framework explored a hybrid
supervised/conditional generative adversarial networks. When they trained their model on consecutive frames,
especially in the case when conditioning on the previous ground-truth colorized frame, the consecutive GAN
model achieved high pixel accuracy, but when color propagation was applied throughout a video, colorization
errors occurred on fast moving objects. Another problem that they encountered was exponential error propagation
caused by the distribution difference between the distribution difference between training examples and what
GAN has to work with for color propagation. To solve the problem of coloring fast moving objects, the first step
is to recognize motion and continuity of objects in the video [6]. Furthermore, researchers used a temporal
propagation network architecture to classify images on each frame and color the objects consistently using
bi-directional training on pairs of frames [5].

This problem was also explored in “ColorNN Book: A Recurrent-Inspired Deep Learning Approach to Consistent
Video Colorization” [1]. They constructed an architecture that inherits layers from a VGG-16 model trained on
ImageNet and employed transfer learning to create a baseline coloring model. Then, to look at frames in relation
to one another, they used a recurrent neural network since the neurons in a recurrent network preserve a selective
temporal memory, and output different things based on the input ordering of examples. This model proved to be
too computationally costly though so instead of using recurrent nodes, they ran the Y-channel input of a frame t
through the color model, and takes in the estimated coloring of the previous frame as additional input.

The approach of this project hopes to build upon the findings of these research papers and improve upon the
problems of exponential error propagation and aim to decrease computational costs.

3 Data Set

This project uses the open source Moments in Time dataset developed by the MIT-IBM Watson Al Lab, which
includes a collection of one million labeled 3-second videos. The 500-video hiking subdataset was specifically
selected and converted to grayscale. Then, the grayscale videos were colorized using a pre-trained image
colorization network and center-cropped to produce 128 x 128 colorized videos for training. We then shuffled and
split the videos into 80% train / 10% dev / 10% test, and constructed a dataset consisting of labeled examples of
(X=[previous colorized frame, current colorized frame], Y=[current true frame]).

4 Method

4.1 Baseline

A simple baseline implementation simply leverages the pretrained image colorization model presented in Zhang,
Isola, and Efros’s “Colorful Image Colorization” and applies it to independently colorize each frame [4]. While
this image colorization model generates relatively realistic recolorizations on an image-by-image basis, given that



the positional context of each frame is not taken into account, this baseline algorithm produces videos with large
color-shift variations between frames. This is especially apparent during inspection by human eye -- large color
oscillations occur throughout the recolorized video.

Figure 1: Baseline Colorization Algorithm (frames sampled 10 apart). Top: true colorization, Bottom: baseline colorization

Using the baseline algorithm, we found that frames that are moving quickly seem to do worse than frames that are
moving more slowly. The pixel match percentage accuracy (binary pixel difference averaged across all frames) of
videos selected to encompass a variety of environments, such as the forest, desert, ocean, vary from 23% to 40%
in similarity to the ground truth videos. Pixel-match accuracy in itself, however, can be a misleading metric since
pixel match accuracy is a binary metric that doesn’t account for the degree of variation between pixel values.

4.2 Loss Function

As mentioned in the previous section, exact pixel match accuracy is a relatively simple and non-

holistic metric for good video colorization, and leads to inconsistent colorization of each individual frame. For our
loss function, we wanted to reward colorizations for being closer in pixel value to the true video, and thus we used
a MSE loss to penalize large pixel value differences. Additionally, we wanted to reward colorizations for
consistently coloring consecutive frames, and so we also calculate the MSE loss between the current predicted
frame prediction and the previous predicted frame. We then take a weighted sum of the two losses to complete our
loss function, which is defined as:

B 2SN (i — )2+ (1= B)* & (5 — §im1)?

If 5, a tunable parameter, is 1, then we only care about the true frame (independent frame colorization); if 5=0,
then we only care about the previous frame (results in duplication of previous frame). In practice, 5=0.8 was
selected, with the intuition that it is more important to first color the frame to closely resemble the true frame
color and then adjust the colorization to be similar to that of the previous frame’s. Finally, it’s important to note
that this loss function, like exact pixel match, is simply a heuristic for approximating a measure of video
colorization. The final performance evaluation of the algorithm should be conducted by human inspection, as the
purpose of the project is to produce a realistic video recolorization, rather than an exact one. For example, we are
satisfied if a grayscale shirt is plausibly recolorized as red when, in reality, it was actually blue.

4.3 AlexNet CNN

The first model architecture we trained was an AlexNet-based CNN. We used Keras to implement an AlexNet
model that accepted a concatenation of the current and previous 128 x 128 x 3 colorized frames as input, and then
replaced the FC output layers with deconvolutional layers to output a 128 x 128 x 3 colorization for the current
frame. The model resulted in ~9 million trainable parameters and is shown below:



128
60
29

128

6 12 1 20 36 64 128

128 60 | 29 14

- E=S
256 | 3%
. 256 384 . 64

384

256
96 3

Figure 2: AlexNet-based CNN

4.4 VGG16 ImageNet CNN

After training and analyzing the results of the AlexNet CNN, it became apparent that there was an insufficient
amount of data to train a model to both recognize and preserve object shapes as well as perform video
colorization. Thus, instead of training a CNN from scratch, it was proposed that we instead fine tune the Keras
pretrained VGG16 ImageNet model. We first froze all of the existing VGG16 layers, then prepended a
concatenation and convolutional layer to allow the acceptance of the current and previous 128 x 128 x 3 colorized
frames as input. Then, as in the AlexNet CNN, we appended a series of deconvolutional layers to output a 128 x
128 x 3 colorization for the current frame. The model resulted in approximately 7 million trainable parameters and
15 million non-trainable parameters.

5 Results and Analysis

When training our initial models, we noticed that the models would quickly learn to colorize each frame as black
to minimize loss, converging within the first training epoch. After trying a series of gradient dampening
techniques and other optimizations, it was found that the resizing of the videos during preprocessing caused many
to have significant amounts of black padding, thus causing the models to optimize for producing black frames.
The implemented solution, then, was simply to take a 128 x 128 center crop of each frame to eliminate the black
regions. We then trained the AlexNet and VGG16 models described above, and the results of training for 100
epochs are visualized in Figure 3 below:

Figure 3: Video Colorizations. Top to bottom: (1) True colorization, (2) AlexNet CNN, 5=0.8,
(3) VGG16 ImageNet CNN, =1, (4) VGG16 ImageNet CNN, 5=0.8

As seen in Figure 3.2, when first training an AlexNet model, it became quite apparent that while the model was
learning to minimize the loss function relatively well, it lacked the data and complexity to fully learn the contents
of each image. As a next step, we hypothesized that the results could be improved if we incorporated a pretrained



VGG16 ImageNet model and fine tuned it to generate consistent video colorizations while preserving image
contents. The trained VGG16 ImageNet model seemed to produce colors that were closer to the true color than the
model using the AlexNet CNN (Figure 3.3), likely due to its use of a pretrained image network as well as the fact
that it simply has more parameters and higher complexity. While the models unfortunately generated blurry
images, they did noticeably reduce the amount of error propagation (a common issue for video colorization
algorithms) since an independant colorization of the current frame was used to “checkpoint” the colorization of
the current frame, given the previous frame.

An examination of the training loss over time also yielded some interesting observations:

Training Loss with VGG16 ImageNet, b=1 Training Loss with AlexNet, b=0.8 Training Loss with VGG16 ImageNet, b=0.8

3500
3000
5000 2500

g 2000

Cost
&
g
g

Cost

3
g
g

3000 1500
2000 1000 1000

1000 500

0 10 220 330 4 0 6 70 8 0 50 100 150 200 250 300 0 50 100 150 200
Epoch Epoch Epoch

Figure 4: Training Loss vs. Epoch.

The VGG16 ImageNet with = 1 model converges most quickly, is less noisy, and has a smaller stable cost,
further confirming that its generations are closer in color to the ground truth when compared to other models (see
Figure 3). In all cases, there were likely insufficient training examples for the models to learn both to recognize
object shapes as well as to optimize for a similar colorization between frames, resulting in blurry frames. The
VGG16 likely performed better because it fine tunes a pre-trained ImageNet network, and thus performs better
given few training examples. Additionally, a model might perform better when 5 = 1 compared to when 8= 0.8
because there’s a slight mismatch between the input and the loss function since the input is using the previously
colorized frame, whereas the loss is using the generated previous frame.

6 Conclusion and Future Work

From our results, we can conclude that having § values closer to 1 results in faster model training and leads to
video colorizations that are closer to the ground truth video when compared in terms of pixel difference, but more
experimentation and human agreement would be necessary to determine the exact optimum f value. The trained
models all seemed to suffer from a lack of training data, as supported by the resulting blurry frame colorizations

as well as the dramatic improvement in color consistency when incorporating a pretrained ImageNet network.
Overall, this project was a rewarding deep learning experience, through which we were able to explore methods of
Improving pre-existing video colorization techniques, gain real-world experience working with CNNs, and better
understand the importance of the iterative deep learning process.

If given more time and resources, it would’ve likely been rewarding to continue exploring different, more
complex models and optimization techniques, as well as attempting to gather and train with a larger dataset (video
training is quite memory-intensive, and we were limited in terms of storage / computing power). For example,
given enough data, it would be interesting to see the results of unsupervised training techniques on video
colorization. Additionally, instead of only considering the previous generated frame, another interesting feature to
explore would be conditioning on a sliding window of the previous n generated frames (or even all previously
generated frames), perhaps using a technique such as keeping a running average of each pixel value.



7 Contributions

Both members of the team were in charge of conducting initial research about the topic and understanding the
state-of-the-art video colorization techniques. Afterwards, we worked together to define a loss function and design
an architecture that would improve upon the currently existing ones. Yang set up the GitHub repository and built
the model and training architecture for the video colorization model. Vedi set up an EC2 instance on AWS and
conducted experiments by training a series of models with different hyperparameters. Both members worked
together in analyzing the results and creating the project poster and report.

9 Acknowledgements

We would like to give a special thanks to Gael Colas, our project TA, for always being a resource to answer
questions that we have. We would also like to thank Kian Katanforoosh for initially helping us think through our
project problem statement.

10 Codebase

This code for this project can be found at: https://github.com/yangfangk/cs230-video-colorization

11 References

[1] Divyahans Gupta, Sanjay Kannan. ColorNN Book: A Recurrent-Inspired Deep Learning
Approach to Consistent Video Colorization. 2016, http://cs229 stanford.edu/
proj2016/report/KannanGupta-ColorNNBook-report.pdf.

[2] Gael Colas, Kevin Lee, Rafael Rafailov. Consistent Video Colorization. 2018,
cs230.stanford.edu/projects fall 2018/reports/12444081.pdf.

[3] MIT-IBM Watson Al Lab. “moments in time” dataset. http://moments.csail.mit.edu

[4] Richard ZHang, Phillip Isola, and Alexei Efros. Colorful image colorization. 9907:649-666, 10 2016.
https://github.com/richzhang/colorization.

[5] Liu, Sifei, et al. Switchable Temporal Propagation Network. NVIDIA, UC Merced, Dalian University
of Technology, 4 May 2018, arxiv.org/pdf/1804.08758.pdf.

[6] Bashkirova, Dina, et al. Unsupervised Video-to-Video Translation. Boston University, 10 June 2018,
arxiv.org/pdf/1806.03698.pdf.

[7] He, Mingming, et al. Deep Exemplar-Based Colorization. Hong Kong UST, University of Science
and Technology of China, Microsoft Research, 21 July 2018, arxiv.org/pdf/1807.06587.pdf.



