Real-Time Trading Card Recognition in Live Video

Kevin Culberg
Department of Computer Science
Stanford University
Stanford, CA 94305
kculberg@stanford.edu

Abstract

Tournaments for physical card games such as Magic: The Gathering attract thou-
sands of online viewers. Despite this success, tournament livestreams are not easily
accessible for newer players who have not memorized the many unique cards. I
propose an object detection model based on the popular "You Only Look Once"
(YOLO) model architecture to detect cards from real time video of tournaments to
improve viewer understanding and accessibility. Detection time for my model aver-
aged 57.1 ms per frame while still achieving a mean average precision (mAP) score
of 62.09% on card bounding boxes. As the number of unique classes increased
the predictive power of the model suffered indicating that the model architecture
would need to be changed further in order to be applied in real tournaments.

1 Introduction

The popularity of physical trading card games has increased in recent years with the most popular
card game Magic: The Gathering earning over $300 million in 2016 and attracting over 30,000 online
viewers to its livestreamed tournaments.[1] Despite this success, tournament livestreams are not easily
accessible for newer players who have not memorized the thousands of unique cards. Game rules
depend on knowing the text on each card played, but these cards are unreadable on video. In this
paper I approach trading card recognition in live video as an object detection problem and propose a
model structure to address the challenge of accurately detecting dozens of cards from unique classes
fast enough to work on live video.

The object detection model will take in as input a still frame from a video of a tournament. This
single frame contains three color channels and is resized to a height and width of 608 by 608 pixels.
The network then performs a series of 2d convolutional layers and other operations before outputting
a feature map tensor. This feature map tensor has the dimensions S x S x (5 + C), where S is
the number of cells remaining and C' is the number of unique classes. This feature map contains
information about all detected bounding boxes and the probability that the box is of each type of
class. The feature map can then be translated into a list of detections which can be overlaid on top of
the video frame or output in another way to make viewing of the livestreamed tournament easier.

There are a number of advantages to this type of problem that work to make the task easier than many
other object detection tasks. First, almost all tournament video is shot from a top down angle of a
table of cards with a solid colored background. This results in all objects having roughly the same
size, shape, and lighting. This perspective also means that things like skew or background textures
play a minimal role in warping the visual representation of the cards. Furthermore, in most cases
each class has only one way to represent it. That is to say that each card of the same type will have
the same artwork and thus the same physical appearance. This leaves only visual invariances caused
by rotation or occlusion that will need to be addressed by the network. Cards may be rotated on the
table during the course of play and occlusion is common from a player’s hand or another card.

2 Related work

Object detection is the computer vision task of identifying and correctly classifying objects within
an image. This task combines the challenge of correctly predicting a bounding box for an object
and classifying the object with the correct label. Early work in object detection using deep neural
networks relied on re-purposing image classification networks to perform two stages: one to predict
the bounding boxes and the second to classify the object within each bounding box.[3][2] These
techniques were effective, but also took more time to train and predict due to requiring two or more
passes through the neural network to obtain the detections.

Later work such as the aptly named "You Only Look Once" (YOLO) model combined these steps into
a single pass through a network designed to be fast and efficient on the task of object detection.[4]
YOLO is optimized to detection objects such as animals and people of varying sizes and types. For
example, YOLO is prepared to detect objects that may take only a few pixels in the background
of an image such as a bird flying in the sky to a large closeup of a dog that may take up the full
frame. Additionally, the individual classes that YOLO is trained on can have drastically different
physical appearances. Not only are there many different shapes and sizes for "person" objects, but
there is also a large amount of variation in the camera angles, lighting, and other factors that can
change the pixel representation in an image. YOLO is capable of detecting people in this variety
of situations due to its structure. The current version of YOLO, version 3, predicts three different
feature maps and each feature map predicts three bounding boxes per cell. [5] These feature maps can
be thought of as a grid overlaid on top of the image. Each grid has a different scale with the smallest
downsampling the image dimensions by a factor of 8 and the largest by a factor of 32. Another key
aspect is that YOLO only calculates the loss from the bounding box location and size if that box has
a large enough overlap with a true label bounding box. This way, the network learns to detect a large
variety of objects with different cells on different feature maps specializing on objects of different
sizes. However, one weakness is that increasing the number of classes greatly increases the size of
these feature maps and makes training more difficult. My proposed model is most similar to YOLOv3
but differs because all the objects in card detection have a similar size and shape so only a single
feature map needs to be predicted.

3 Dataset and Features

The datasets used for training and evaluating the baseline consists of full color images taken from
tournament video with labeled bounding boxes for every card within the frame, Figure 1. A single
image’s label includes the bounding boxes represented as the x and y coordinates of the center point
of the bounding box as well as the width and height, each as a percentage of the image height and
width. Each bounding box is accompanied by a class number to identify which card is present within
the bounding box. A single image may have as few as no objects or as many as dozens of unique
objects.

ooNCl m JIMMY BRANDLEIN \ESZEEl] TODD ANDERSON m
GRUULAGGRO 0-0 0vs0 0-0 TEMUR RECLAMATION

PATRICK SULLIVAN & CEDRIC PHILLIPS W @SCGTOUR RO Rotp”

Figure 1: An example of a single frame from a tournament livestream (left) and an augmented image
created by inserting images of cards onto a frame (right). These images are resized to 608 x 608
before being passed in as input to the network.

No labeled dataset previously existed that contained images from a tournament video with labeled
bounding boxes. Due to similar presentation of tournament video in respect to lighting and background
it is possible to generate a dataset which appears very similar to real images. This process involved

Table 1: Model structure

Start Region 1 Region 2 Region 3
Type Conv2d Conv2d Resxl1 Conv2d Resx2 | Conv2d Resx8 Conv2d Resx8
Filters | 32 64 32/64 128 64/128 | 256 128/256 | 512 256/512
Size 3 3 3 3 3
Stride | 1 2 2 2 2
Head Output
Type Conv2d Conv2d Conv2d Conv2d Conv2d Conv2d | Conv2d
Filters | 256 512 256 512 256 512 5+C
Size 1 3 1 3 1 3 1
Stride | 1 1 1 1 1 1 1

taking frames of tournament video with no cards present to use as a background image and then
inserting card images into the image so that the bounding box locations and labels are known. Card
images are modified to have their lighting and color match those of a real image and they are randomly
rotated and placed on the image to simulate invariances due to rotation or occlusion.

Three full datasets were created from the same base of 302 hand-labeled images with only real
objects containing 51 unique class ids. These images were then split int a train/validation/test
dataset containing 62/120/120 images, respectively. The images in the train split where then further
augmented in the same manner as described above by artificially inserting cards from either the
same pool of 51 classes or a larger pool of 264 classes. This process yielded three different training
datasets: Dataset 1, Dataset 51, and Dataset 264, named after the number of unique classes they
contained. These datasets could then be used to measure the impact that the number of classes had on
the performance of the models. Datasets 51 and 264 contained 20,000 images total in their training
set, of which 10% contained real frames with some augmentation and the rest were fully augmented.
Dataset 1 contained only 10,000 images in the training set and used the label of "card" for all objects
instead of a unique card name.

4 Methods

The model is implemented as a deep convolutional neural network (CNN) to perform detection in
a single step similar to YOLOV3’s darknet 53.[5] The key difference is that only a single feature
map is predicted for the input image with a downsampling of 16. This means that an input image of
608 x 608 pixels will produce a feature map of 38 x 38. See Table 1 for full model structure. Each
convolutional layer is a 2d convolution with filter size of 1 x 1 or 3 x 3. Each convolutional layer
also uses batch norm with a decay of 0.9 and leaky ReLU as the activation function with o = 0.1.
No pooling layers are used throughout the model. Every residual block consists of two convolutional
layers with the first layer having a filter size of 1 and the second having twice the number of filters
(the same number as the input to the residual block) and a filter size of 3. The output of a residual
block is the output from this second layer added to the input to the residual block.

The first few layers of the network consist of two convolutional layers with 32 and 64 filters, a filter
size of 3, and stride of 1 and 2, respectively. This is followed by a single residual block which results
in the base image height and width cut in half. Residual blocks allow for the outputs from earlier
layers to be combined with later layers through addition. The body of the network can be thought of
as three regions. The first layer of each region is a convolutional layer with filter size 3 and stride 2
that doubles the number of filters from the previous block and halves the height/width of the input.
This is followed by a number of residual blocks so that the output maintains the same dimensions
throughout the block. The number of residual blocks in each of the three regions are 2, 8, and 8. The
output dimensions from the body of the network are a tensor with dimensions 38 x 38 x 512, which
is then passed to the head of the network to be converted into a feature map.

The head of the network consists of six convolutional layers alternating between filter size of 256
and size 1 and 512 with size 3. This is then passed through a final convolutional layer of size 1 with
the number of filters corresponding to 5 + C' where C is the number of classes to produce the final
feature map. Each cell in the feature map can be thought of as containing a feature vector of length
5 4 C. The first two elements of this vector are ¢, and ¢,, and correspond to the predicted bounding
box center x and y position as a ratio of the original image. The next two elements are t,, and ¢;, and
correspond to the predicted bounding box width and height as a ratio of the original image. The fifth

element is the probability that the cell has predicted an object which is referred to as its objectness
score. The final C elements are a probability vector that sums to 1 with the probability that this
object is one of C' classes. This feature map can then be translated to a list of detections where each
detection much meet some threshold for its objectness score such as greater than 0.5.

To convert between the feature map predictions and bounding box center coordinates use equation 1
and for bounding box size apply equation 2:

by = (0(ty) +¢2)/S (D

b’w = U(tw) % (wmax - wmin) + Wnin (2)

where b, and b,, are the bounding box center = coordinate and box width; ¢, is the x index of the
cell, S is the number of cells, wy.x and wy,;, are the maximum and minimum widths of a bounding
box in the dataset and are calculated once over the entire dataset and not changed. These equations
can be applied to the y coordinate and box height by swapping the variables.

The loss function used during training combines the loss from each aspect of the predicted bounding
boxes, see equation 3. The loss from the predicted bounding box coordinates and size are calculated
using sum of squared error between the predicted values and the true values. This loss is masked so
that it is only calculated for those cells that have an object present in the true label. The loss from
these predictions is also weighted with A.yo,g = 5 and Ag,e = 5. The loss for correctly predicting if a
cell contains the center point for an object is done with binary cross entropy and is weighted with
Anoobj = 0.5 so that failing to predict no object has a lower impact to training because many more
cells will not contain an object during training. The loss for correctly predict the object’s class id is
calculated by applying softmax and cross entropy error.

s S
)\coord obj “ R
L="c D 0D 1P (i — 245)° + (w5 — 943)°)
i=0 j=0
A S S
size ob %
T S2 Zzﬂijj((ww le)Q + (hij hz])Q)
0 j=0

3

_ % Z Z]l;);’Jd” log dAij noobj Z Z .ﬂ_noobj 1— 1] log (1 _ dlj)

7=0 1=0 j=0

S S
“E Lt T pulossu(

=0 5=0 cEclasses

The baseline model tested so far is an implementation of YOLOv3 (github) with a 608 x 608 pixel
input to match my proposed model. [4] This model was selected as a baseline due to its proven speed
and accuracy as a state of the art object detection network. This model is also capable of performing
the full detection and classification task end to end as well as comparison on the first stage task of
bounding box prediction.

5 Experiments/Results/Discussion

The two models were evaluated on three separate datasets by measuring the mean average precision
(mAP) of the detections they generated as well as their detection speed per image. For each dataset,
my model was trained for 10 epochs with a learning rate of 1e~2 and batch size of 2. The loss
function was weighted with Acoora = 5, Asize = 5, Anoobj = 0.5, and Ajas = 1. The YOLOV3 baseline

model was also trained for 10 epochs with a learning rate of 1e~3 and batch size of 1.

Full results for both models on each metric are available in Table 2. Both models performed well
within requirements for single frame prediction speed with my model being slightly faster to predict
objects for a single frame at 57.1 ms. With this speed it would be possible to predict over 15 frames
per second when requirements for assisting viewers of live tournaments would only need a single
frame per second. My model also outperformed YOLOvV3 on mAP for the datasets with multiple

Table 2: Results

Mean Average Precision (mAP) Speed
Dataset 264 Dataset 51 Dataset 1 (ms)

me 5.31% 6.78% 62.09% 571
YOLOvV3 0.10% 2.20% 86.08 % 67.4

MYTHI

MYTHIC e M C
CHAMPIONSHIP v e 5 CHAMPIONSHIP

Figure 2: Predicted objects on a single frame from Dataset 1 produced by my model (left) and the
YOLOV3 baseline (right).

classes. However, both models performed very poorly on these datasets and produced results that
would not be useful for real tournament video. YOLOV3 outperformed my model on Dataset 1 with a
mAP of 86.08% compared to my model with 62.09%. Both of these scores would be acceptable for
real tournament video with the main difference being how tight the predicted bounding boxes are to
the card border. Figure 2 contains side by side examples on the same frame from the test set. From
this is it clear that almost all cards are detected by both models, but the outlines for the bounding
boxes are messier from my model. The cards that are missed by my model are those that are heavily
obscured by the players arm. Looking closer at the bounding boxes for Datasets 264 and 51 it is clear
that as the number of classes increases both models do worse at predicting both the correct class and
at the bounding box shape. There was also a large amount of training instability that is likely caused
by the multiple aspects of the loss function pulling the model in different directions. It is possible
that readjusting the weights of the various parts of the loss function could correct for this in a small
way and improve results.

6 Conclusion/Future Work

I believe that the failure to predict cards when multiple classes were used in the training set is
due to the large amount of time needed to successfully train the network and the small size of the
dataset. However, the number of unique classes will continue to restrict the model’s ability to scale to
thousands of unique cards, which would be required for many real tournament applications. Results
were promising when limited to only predicting card outlines even when presented with multiple
overlapping cards and other forms of occlusion such as player’s hands. It is likely that building a
separate network to do card image classification from the region of the video frame located within
the predicted bounding box would offer a way to obtain accurate classification results. This would
allow developing a network with a structure specialized for that task such as those used for facial
recognition, which is another problem involving predicting thousands or more classes that all have
similar size and shape. This would also help the card outline detector model to work better by having
a loss function with greater stability due to not being pulled in other directions by the class prediction
loss. Due to the quick bounding box detection time I believe that the addition of another stage network
would not cause the end to end time for detection and classification to be too slow for realistic use.

7 Contributions

Kevin Culberg worked independently on this project. Source code is available on Github -
https://github.com/culk/StreamSight

References
[1] CML. The problem with magic: the gathering no one is talking about. The Daily Dot, 2016.
[2] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[3] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.

[4] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[5] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767,
2018.

