Image-to-Image Translation using CNN and Cycle-
Consistent Adversarial Networks

Xuejiao Li
Wenxin Wei
Ip Chun Chan

Abstract—This project aims to make image-to-image
translation for different tasks using both neural style transfer
technique and cycle-consistent adversarial networks. Using our
own dataset generated by a combination of online images,
ImageNet dataset, and Flickr dataset and Wikiart.org, we have
successfully generated images for different tasks. Our innovation
is we train and test the cycle-consistent adversarial networks
using our own dataset. We have also tried to fine-tune
hyperparameters such as batch size, learning rate, lambda in loss
function and trying to add dropout to our network. The
experiment results show that our method is able to successfully
transfer for different tasks while preserving the original content.

Keywords—Image-to-Image Translation, Neural
Transfer, Cycle-Consistent Adversarial Networks

Style

L. INTRODUCTION

Image style transfer has been popular these days for
producing samples for visualizing interior design, computer
games items and create drawings. Lots of people use filters on
camera to get funny pictures (ex: snapchat filters, Instagram
filters). However, style transfer between two images is a less
studied problem. Given both a content image and a style
image, photographic style transfer will recreate the content
image in the style of the second image, which can be used to
transfer effects such as time of day, season, and illumination.
Existing techniques are not enough to produce accurate
transferred images, so we want to explore more and try to
improve the existing algorithms. For example, if we transfer
the style of a painting to a photograph, the final output tends to
have a very generalized style, because a painting commonly
has a consistent style, but a photographs tend to have a more
localized style. In addition, for many tasks, paired training
data will not be available.

We present an approach for learning to translate an image
from a source domain X to a target domain Y in the absence of
paired examples using CycleGAN (Cycle-consistent
Generative Adversarial Networks). Our project is mainly
about transferring the look of one photo onto another, while
still looking like a photo, and especially focusing on
implementing CycleGAN for unpaired examples. For
CycleGAN algorithm, our objective contains two types of

xjli1013@stanford.edu
wxwei(@stanford.edu
kaichun2@stanford.edu

terms: adversarial losses for matching the distribution of
generated images to the data distribution in the target domain;
and cycle consistency losses to prevent the learned mappings
G and F from contradicting each other. These two make
CycleGAN more powerful than traditional methods.

With this technique, we can not only transfer input images
into artistic styles of Monet, Van Gogh, Ukiyo-e, and
Cezanne, but also make object transfiguration such as
changing between a horse and a zebra, an apple and orange
and even changing the background environment into a
snowing scene.

We can imagine all these despite neither having seen a side
by side example of a Monet painting next to a photo of the
scene he painted, nor snow in California. Instead, we have
knowledge of the set of Monet paintings or snow images and
of the set of landscape photographs. We can reason about the
stylistic differences between these two sets, and thereby
imagine what a scene might look like if we were to “translate”
it from one set into the other.

We apply our method to a wide range of applications,
including collection style transfer, object transfiguration,
season transfer and photo enhancement. These applications
can be adapted by companies like Instagram or Snapchat to
create interesting filters, or even by autonomous driving
companies to improve their performance based on the snow
images we generated.

IL. RELATED WORK

CNN has been proved to have powerful ability for image
style transformation. Our work with CNN is based on the
paper Deep Photo Style Transfer by Luan et al [1]. This paper
builds upon the well known work Neural Style Transfer by
Gatys et al. [2]. Throughout this paper we will give an in-
depth explanation of image style transfer as described in [1]
and discuss specifics of how to improve the original algorithm
to generalize well to two unpaired images. The largest
improvements in this method are gained through CycleGAN.
This newly developed algorithm is more powerful than the
traditional CNN to do image style transfer. Our work with
CycleGAN is based on the paper Unpaired Image-to-Image

Translation using Cycle-Consistent Adversarial Networks by
Zhu et al [3]. Building on the model introduced in the paper,
we use combined datasets to do different image style
transferring tasks such as let there be snow in California.

Generative Adversarial Networks (GANs) [4] have
achieved impressive results in image generation, image
editing , and representation learning. The key to GANS’
success 1s the idea of an adversarial loss that forces the
generated images to be, in principle, indistinguishable from
real photos. This loss is particularly powerful for image
generation tasks, as this is exactly the objective that much of
computer graphics aims to optimize. We adopt an adversarial
loss to learn the mapping such that the translated images
cannot be distinguished from images in the target domain.

Cycle-Consistency uses transitivity as a way to regularize
structured data. In visual tracking, enforcing simple forward-
backward consistency has been a standard trick for decades
[5]. More recently, higher-order cycle consistency has been
used in structure from motion, 3D shape matching, co-
segmentation, and depth estimation. Our work is very similar
to that of Zhu et al [3], Zhou et al. [6] and Go- dard et al. [7],
as they use a cycle conmsistency loss as a way of using
transitivity to supervise CNN training.

I1I. DATASET AND FEATURES

A. Dataset preparation

We gather our own unique dataset for both neural style
transfer and cycle-consistent adversarial networks from google
internet, ImageNet and Flickr.

Neural style transfer task. We choose to use images
directly from the internet, and use some painting images as our
style image. We then scale our images to 400*300 pixels.

For cycle-consistent adversarial networks, depending on
different applications, we choose to use different dataset.

Making snow on the image task. We choose to use dataset
provided by Flickr with the tag yosemite. The images are
scaled to 256*256 pixels. And our training set contains 1200
original images and 850 snowy images. For test set, we
randomly download some images from the internet to gather
the result.

Horse to Zebra and Apple to Orange task. We choose to
use dataset provided by ImageNet that contains horse, zebra,
apple and orange as our training set. We scale the images to
256*256 pixels. For training set, we use 800 images for horse,
1000 images for zebra, 1000 images for apple and 1000
images for orange. For test set, we randomly download some
images from the internet and gather the result.

Monet painting to photo task. We gather Monet paintings
both from the internet and from Wikiart.org. The photo images
are obtained from both the internet and Flickr. We also scale
the images to 256*256 pixels. Again, for test set, we
randomly download some images from the internet and gather
the result.

Iv. METHODS

A. Neural Style Transfer

We first used Neural Style Transfer to perform image-to-
image translation, which synthesizes a novel image by
combining the content of one image with the style of another
image. We used VGG convolutional neural network and we
defined a cost function for both content and style pictures and
then use gradient descent to minimize the combined cost. The
overall cost function is the following

J(G) = a]content(cf G) + ﬁ]style $,6)

where and are the hyper-parameter where we tuned to get
the minimum loss. For the input of the cost functions, C means
the content image, S means the style image and G means the
generated image. In particular, we used J.onten:t(C,G) =
0.5%(al©) — qll@)2 where allis the activation of layer

on the images. For style loss, we used Gram matrix (ex:
0] 1]

Gl = Z?Zl Z?‘i’l al[j.]kal[j.]k,) to get the cost function

Jstyie(C,G) = (GU® —GHE) Zwhere i and]
corresponds to the vertical and horizontal position of the
image and k and k’ corresponds to the channel index.

Rather than mapping one specific image to another one, we
trained the network to learn the mapping from one collection
to another collection (ex: from a background environment to a
snowing background). This learning can be applied to other
tasks and change all the new input images to have the same
feature.

B. Cycle-Consistent Adversarial Networks

Our second method is to combine adversarial losses and
cycle consistency losses to learn mapping functions between
two domains.

Bla) Adversarial Loss

We used the following formula as the adversarial loss
Leaw = EllogDy(»)] + E[log(1 — Dy(G(x)))] where Dyis
a discriminator that encourages G which is a mapping function
that maps from domain X to Y to translate image X into
output that is indistinguishable from domain Y. The first E is
the expected value taken from the data distribution x~p(x) and
the second E is the expected value taken from the data
distribution y~p(y).

In the above formula, the purpose of the mapping function
G is to generate images G(x) that look similar to images from
domain Y. We used a similar function for the mapping
function F which maps from domain Y to X and the
adversarial loss is as follows:
Loaw = E[logDx(x)] + E[log(1 — Dy(F(»)))] with the
first E taken from the data distribution y~p(y) and the second
E taken from the data distribution x~p(x).

B1b) Cycle Consistency Loss
Using adversarial loss alone cannot guarantee every input
x mapped to a desire output y, because with large capacity, a

network can map the same set of input images to any random
permutation of images in the target domain. To reduce the
mapping function’s dimensions, we need to make sure that the
image translation cycle will bring the x back to the original
image. So we used the following Cycle Consistency Loss
formula:

Leye(G F) = E.zwm.....(.z-)[HF(G(-I‘)) — z|1]
+ E.’/"’I’nldm(.’l)[“G(F(U)) - .‘/”1]-

where F is a mapping from Y to X and G is a mapping from
domain X to Y. In order to be cycle-consistent, F(G(x)) should
map back to x and G(F(y)) should map back to y.

B2) Network Architecture

We use the the architecture from Johnson et al. [8] as the
starting point of our network, because it showed impressive
results for neural style transfer. This network contains two
stride-2 convolutions, several residual blocks [9], and two
fractionally strided convolutions with stride 1/2 . We use 6
blocks for 128 x 128 images and 9 blocks for 256 x 256 and
higher resolution training images. Similar to Johnson et al. [8],
we use instance normalization [10]. We use 70 x 70
PatchGANSs [11] for the discriminator networks, which aim to
classify whether 70 x 70 overlapping image patches are real or
fake. Such a patch-level discriminator architecture has fewer
parameters than a full-image discriminator and can work on
arbitrarily-sized images in a fully convolutional fashion [11].

V. EXPERIMENTS AND RESULTS

A. Training Details

Training Environment
For neural style transfer, we simply use MacOS CPU to
generate the result. Our training environment is shown in table
1.
Table 1: Training Environment

Language Python3.5

Framework Google TensorFlow 1.4.0

For cycle-consistent adversarial networks, we choose to
use a GPU to train our network from scratch, since the
required computation power of neural network is huge. Our
training environment is shown in table 2.

Table 2: Training Environment

Language Python3.5
Framework PyTorch 0.4
GPU Nvidia GeForce GTX 960M
GPU Memory 4044MB
Initialization

Weights are initialized randomly from a truncated normal
distribution with zero mean and 0.001 standard deviation for
symmetry breaking.

With proper data normalization, it is reasonable to assume
that approximately half of the weights will be positive and half
of them will be negative. Therefore, we want the weights to be

very close to zero, but not identically zero, because if every
neuron in the network computes the same output, then they
will also all compute the same gradients during back-
propagation and makes the exact same parameter updates [12].

Learning rate

The learning rate is 0.00025 for the first 150 epochs and
we use linear decay every 30 epochs towards the end. The
learning rate for the latter is relatively smaller, since we are
fine-tuning the model for the latter steps. We tried several
combinations and find this one can obtain both high efficiency
and good convergence.

Batch size

Unlike the original paper, we use batch size for gradient
descent equal to 5.

We choose batch size not equal to 1 to avoid overfitting.
And we observe a better trade-off between performance and
hardware limitation.

Update Method
We applied Adam update, which in practice works slightly
better than standard momentum.

Regularization

We have also applied dropout method as regularization
technique, which can reduce overfitting in neural networks by
preventing complex co-adaptations on training data. In the
experiment, drop probability is equal to 0.5, as it can
maximize number of randomly-generated network structures
[12].

Loss Function
Our full objective is:

[:(G F, D_\'. Dy) =£GAI\'(("~ Dy. X,))
+ Loan(F, Dx, Y, X)
+ ALeye(G, F),

where the first two are adversarial losses aiming to
minimize G(x) and y; F(y) and x. The last part is the cycle
consistency loss, aiming to reconstruct images F(G(x)) to
match the input images x. We have tried to fine-tune lambda
by a number of combinations and find the original 10 to be the
best choice.

B. Result

Our tasks include: Neural style transfer task, Making snow
on the image task, Horse to Zebra task, Apple to Orange task
and Monet painting to photo task.

For neural style transfer task, we perform 200 iterations for
a given content and style image, and use a pre-trained VGG
model to generate the artistic image.

For other tasks we perform 250 epochs for training, and
after training we perform a single generation on our test-set to
generate images.

Neural style transfer task

We load the content image, style image and VGG16
model, and randomly initialize the image to be generated, and
then run 200 iterations and updates the generated image at
every step.

We plot Fig.1, Fig. 2 and Fig.3 to illustrate one of the
generated image, where we successfully transferred a real
photo into a oil-painting.

Fig.3. Generated Image

Making snow on the image task

We perform 250 epochs for training, and after training we
perform a single generation on our test-set to generate images.

We plot the some of the generated images illustrated in
Fig. 4,5,6 and 7.

Fig.5. Making snow on the image g

[Erree e e e N
AT A

* Fig.6. Making snow on the image 3

e WY s 5
e i

v

g.7. Making snow on the image 4

Fi

Horse to Zebra and Apple to Orange task

We also trained for Horse to Zebra and Apple to Orange
task using the same technique described above. We plot some
of the generated images illustrated in Fig. 8, 9, 10.

Fig.9. Horse to Zebra 2

Fig.10. Apple to Orange

Monet painting to photo task

Again, we trained for Monet painting to photo task using
the same technique described above. We plot some of the
generated images illustrated in Fig. 11 and 12.

Fig.12. Monet to Photo2

C. Analysis and discussion

We show some generated images from the test set for the
snow transfer task in Fig. 4-7. As shown in the examples, our
method is able to successfully transfer the snow to the test
image while preserving the original content. In Fig.6, note the
bright green shirt is transferred into a dark yellow shirt. This
is because trees become bare in the winter and our network
has learned to transfer green image regions into dark yellow.

In Fig.7-8, we show successful examples of horse to zebra
transfer. In Fig.10, we show a failure case for apple to orange
transfer. First, note a red lamp from the source image is
transferred into an orange lamp. This is because our method
mistakenly treats the red lamp as an apple and transfers it into
an orange. In addition, a white cup is also transferred into a
green cup. We hypothesize that the network has learned to
transfer white image regions into green because the training
images of oranges contain many green leaves.

VL CONCLUSION AND FUTURE WORK

In this project, we tried two different methods to do image-
to-image translation, namely, neural style transfer and cycle-
consistent adversarial network. Our innovation is we train and
test the cycle gan using our own dataset. We also tried to fine-
tune hyperparameters such as batch size, lambda in loss
function and trying to add dropout to our network. The
experiment results show that our method is able to
successfully transfer for different tasks while preserving the
original content.

CONTRIBUTIONS

The team worked together to run the training, process
result data, plot curves and tables, as well as make poster and
write the final report. We share ideas through frequent
discussions and cooperate each other.

CODE [13, 14, 15]
Github: https://github.com/kaichun2/cs230

REFERENCES

[1] F.Luan, S. Paris, E. Shechtman, and K. Bala. Deep photo style transfer.
arXiv preprint arXiv:1703.07511,2017.

[2] L. Gatys, A. Ecker, and M. Bethge. A neural algorithm of artistic style.
arXiv preprint arXiv:1508.06576, 2015.

[3] J. Zhu, et al. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE International
Conference on Computer Vision, 2017.

[4] .1 Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
NIPS, 2014.

[5] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward- backward error:
Automatic detection of tracking failures. In ICPR, 2010.

(6]
(7]
[8]

[9]

T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and A. A. Efros. Learning
dense correspondence via 3d- guided cycle consistency. In CVPR, 2016

C. Godard, O. Mac Aodha, and G. J. Brostow. Un- supervised
monocular depth estimation with left-right consistency. In CVPR, 2017

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In ECCV, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[10] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022,
2016.

[11] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image- to-image
translation with conditional adversarial networks. In CVPR, 2017.

[12] xjli, Xuejiao Li and Zixuan Zhou zixuan. “Speech Command
Recognition with Convolutional Neural Network.” (2017).

[13] https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

[14] CS230, coursera, course 4, Art generation with Neural Style Transfer
[15] CS23IN, assignment 3, Q4, Style Transfer

