Meltem Tutar
(CS230 Final Report

Sentiment Analysis on News and Politics Text

Introduction: We are performing sentiment analysis on comments that are in the
political/news domain. Sentiment analysis is the computational study of people's opinions
towards entities such as products, services, organizations, individuals, issues, events or topics
(Liu, 2015). Determining public opinion regarding current events could be very useful for
political bodies deciding on resource allocation and future policies. Git URL:
https://github.com/mtutar-stanford/sentimentAnalysis

Dataset: The dataset is from twitter comments on the 2016 GOP debate. It originally came
from Crowdflower's Data for Everyone library, but we downloaded it from Kaggle. Contributors
labeled if the tweet was relevant, which candidate was mentioned, what subject was
mentioned, and what the sentiment was for a given tweet. Sentiment options are Neutral,

Words in Each Training Example Positive, or Negative. There are 13,874 tweets in total.

1500 We have removed all columns besides [sentiment] and
o [text], which is the tweet classification and text
g respectively. We also further cleaned the dataset by

o removing hashtags (‘#"), mentions (‘@"), retweets (‘'RT),
%0 and re (‘Re’), hyperlinks, and whitespace. We performed a
75%, 15%, 10% split. This gives 10405, 2081, and 1387
for training, dev, and test sets respectively. The average
number of words are displayed in Figure 1.

750

Figure 1: A histogram of the number of words
in each training example

Previous Work: Sentiment analysis is challenging given that deciphering sentiment is
subjective, and that historically there weren’t many available sources of labelled data. With the
introduction of websites that provide organized collections of opinionated documents, such as
Epinions and newswire, early researchers in the 1990’s began applying supervised and
unsupervised machine learning algorithms to predict sentiment of texts. In the supervised
setting, models such as as Naive Bayes, Support Vectors machines, and maximum entropy-
based classification are explored in the literature. Different feature selection schemes have
been utilized for representing text in numerical forms for these supervised approaches. These
include term frequency—inverse document frequency (tf-idf), Term presence, and n-grams. [1]
Other methods for text representation include creating word embeddings where words or
phrases from the vocabulary are mapped to vectors. Unsupervised methods rely more upon
detecting patterns in sentence structure and word usage, and include methods utilizing POS
tagging and sentiment lexicons [2]. We chose the baseline model as a classical supervised
approach, and implemented a multinomial Naive-Bayes using tf-idf to represent words in
sentences.

With the boom of web platforms such as Twitter, Reddit, blogs, and forums, there has been an
increase in data available for sentiment analysis, and a shift towards the application of neural

networks, which traditionally perform better on large datasets. Neural networks can be
categorized into feedforward and recurrent (RNN). RNN’s are most common in NLP literature
because predictions from previous inputs affect next outputs, which makes it suitable for data
having a sequential nature. Long short-term memory models (LSTM) are a variant of RNN,
which allows for learning across longer sentences by decreasing the vanishing and exploding
gradients problem that traditional RNN’s have. Gated Recurrent Unit's (GRU) are an alternative
to LSTM’s that are less complex but achieve similar performance [3]. In these models, text is
represented as word embeddings, where the embeddings may be learned by the model itself or
begin with pretrained vectors learned from probabilistic models or neural networks. Examples of
the many available embeddings online include word2Vec, GloVe, and fastText [4]. To improve
upon the baseline model, we chose to build a GRU utilizing pretrained GloVe word embeddings.

Convolutional Neural Networks (CNN’s) are a variant of feed forward neural networks, and in
recent years have begun to be utilized in sentiment classification tasks. CNN'’s learn features of
sentences by projecting the vector representation of sentences onto lower dimensions and
creating a feature mapping. Filters of size n corresponds to learning feature maps from n-
grams. Kim (2014) analyzed different variants of CNN’s, such as static, non-static, and
multichannel and reported that a simple CNN with one layer of convolution and little tuning of
hyper parameters performed remarkably well for sentiment analysis. Motivated by this example,
we decided to also build a CNN model with max pooling over time and pretrained word
embeddings. [5]

Methods: We implemented three models 1) multinomial naive-bayes as a baseline 2) GRU
with GloVe pretrained word embeddings 3) CNN model with max-pooling over time. The
motivation for each is described in the ‘Previous Work’ section.

Multinomial Naive-Bayes with TF-IDF

Before we apply the multinomial naive bayes algorithim, we apply TF-IDF, which creates a
vector of the text in the example. Each entry in the vector are the counts of occurrences of our
vocabulary multiplied by weights determined by how frequently the word appears in other
examples, and how many words are in the current example. The higher the number of words in
the example, and the more it appears in other examples, the lower the score will be. The TF-
IDF is a measure of how important a word is for an example in determining sentiment. We
utilized SKlearn’s CountVectorizer and TfidfTransformer packages to perform this process.

Naive bayes classifers attempt to model the joint probability distribution, which is rewritten
using naive assumptions as in Equation 1.

|4
C =X =Xy ;% = %) = PIC =€) nP(X]- =&|.€ =€)
i
Equation 1: Joint probability being estimated with Naive Bayes

P(X; = x| C =c) and P(C = c) are estimated from the training data using the maximum
likelihood estimates (MLE) of equation 1. They are written in equation 2.

N¢ita
Nq+ an

P(Xj=x|C=c)= P(C=c)= =

Equation 2: MLE estimates of probabilities calculated from the training set

N,;: number of times feature i appears in a sample of class c in the training set
N,: total count of all occurences of all words in class c

NC: number of examples of type c, n: number of training examples

With these estimates, the class that maximizes the joint distribution for a test example is
predicted as portrayed in equation 3.

::]g

arg max p(y,xp...rq) =arg max

ye{l..k} ye{l...k} 9(@;1y)

Equation 3: making prediction on a test set with multinomial naive bayes

GRU with GloVe word embeddings

We've used torch text, spaCy, and

GRU | | GRU || GRU /hmr T Pytorch to create the GRU and CNN
— [models. Torchtext allows easy

e I I tokenization of sentences using spaCy,
I I I creation of a vocabulary, and
generation of padded batches.
Ex, Ex, Ex,
Figure 2: A high level view of GRU architecture, where each GRU unit qu th_e milestone, we experimenteq
has an update gate and reset gate and E represents the embedding with different features such as multi-
matrix, and x represents words as tokens layers, regularization, and different

activation functions for the RNN model.
The variant that resulted in the highest accuracy was a 2-layer LSTM with bidirectionality,
dropout of 0.5, hidden dimension size of 256, and embedding size of 100. Later we
implemented a GRU with the same hyperparameters, which produced similar results to the
LSTM, and decided to continue with the GRU given it is less complex. Each GRU unit has an
update and reset gate, which allows it to alter the inputs that it receives from previous units
and avoid the exploding/vanishing gradient problem.

After the GRU module, we subsequently apply a linear layer, and SoftMax to predict one of the
3 classes of sentiment. A high-level overview of the architecture is shown in Figure 2. We used
adam’s optimization algorithm and are applying SoftMax and subsequently minimizing cross
entropy loss as shown.

CE Loss = — Z YO,clOg (po,c)

Equation 2: Cross entropy loss with SoftMax
y: binary indicator (0 or 1) if class label c is the correct classification for observation o
p: probability observation o is of class c,calculated by taking the softmax of the linear outputEquation 1: Cross

CNN with max pooling over time

The pretrained word
embeddings were still utilized
in this model. 100 Filters of
size 2,3, and 5 were applied.
We padded examples to have a
minimum of 5 words.

wait T T T T T e
for
the

video
and

n't
rent
it

- 1%

| | \ | I The size of the filter dictates
(“l"(wmhﬁ\l'd inﬁl'{ug{;ﬂﬁ M eaing Wymf&p\:'g the window of words that it
analyzes and can be equivalent
to creating n-grams. The
appearance of certain bi-grams, tri-grams, and n-grams within the text may be indicative of

final sentiment.

Figure 3: A high level overview of The CNN with max over time pooling architecture

Subsequently, a max-over-time pooling layer is applied, which is simply the max of the output
of each filter of all the sizes, hence it’s dimension is 300 (3x100). The max-over-time pooling
layer is applied so that inputs of variables dimensions have the same size output. Finally, it is
passed through a linear layer so that the output has dimension of 3. Adam’s optimization
algorithm is utilized, and we are still applying SoftMax and minimizing cross entropy loss as
shown in equation 2.

Results:
Neural Network Models Training | Training Validation | Validation
Loss Accuracy Loss Accuracy
Baseline: Multinomial Naive-Bayes,
TF-IDF == 0.643 - 0.689
GRU with bidirectionality, 0.5 0.503 0.798 0.867 0.651

dropout, 2 layers, 256 hidden
dimension, 100 embedding dimensions
CNN with max pooling over time, 100 | 0.559 0.773 0.784 0.681
filters of size 2,3, and 5.
The training and validation accuracies models after training for 30 epochs. Accuracy is the proportion that
are correctly predicted, with no difference between false positives and false negatives. (Table 1).

GRU Training/Validation Curves

0.80 =
—— Train Acc

—— Valid Acc

Train Loss
08 lid Loss
0.75

07
0.70

06
0.65

05
0 5 10 15 0 5 10 15

Figure 3: GRU accuracy plotted over 30 epochs Figure 4: GRU cross entropy loss plotted over 30 epochs

Discussion: We weren't able to make improvement from the baseline on the validation set,

though we did have higher accuracy on the training set. It seems that the CNN/GRU modes are

not generalizing well. The CNN loss curve is similar to the GRU curve. The large decrease in
training error and eventual increase in validation

Valid Epoch 20 error may indicate there is an overfitting problem.
Dropout is applied, and various other regularization
. methods were also experimented with, without much
060 change in the situation. I ran the CNN model that
i was trained on 10 epochs on the test set to get an

unbiased estimate of error. The accuracy and loss
were similar to the validation set, with a loss of
0.15 0.785 and accuracy of 0.68.

0.30

Figure 5: C(’;nfus[on Mc‘ztric after l;aining the GRU

el fir 00 apodhs To understand where the error is propagating from,

we also plotted confusion matrices. It is apparent
that most of the errors are being made on examples from class 1 and 2. There is a slight
imbalance in class, with 60% of the training examples from class 0.

Future Work: We believe that addressing the imbalances of classes may allow the
CNN/GRU models to generalize better. We are surprised that the deep learning models
were not able to do substantially better than the naive bayes. We believe we need to
fundamentally alter the models by experimenting with different objective functions to
optimize, introducing new features such as POS tagging, and possibly learning from
other training sets.

References

il

2.

Pang, Bo, and Lillian Lee. "Opinion mining and sentiment analysis." Foundations and
Trends® in Information Retrieval2.1-2 (2008): 1-135.

Turney, Peter D. "Thumbs up or thumbs down?: semantic orientation applied to
unsupervised classification of reviews." Proceedings of the 40th annual meeting on
association for computational linguistics. Association for Computational Linguistics,
2002.

Zhang, Lei, Shuai Wang, and Bing Liu. "Deep learning for sentiment analysis: A
survey." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8.4
(2018): e1253.

Berardi, Giacomo, Andrea Esuli, and Diego Marcheggiani. "Word Embeddings Go to
Italy: A Comparison of Models and Training Datasets." IIR. 2015.

Kim, Yoon. "Convolutional neural networks for sentence classification." arXiv preprint
arXiv:1408.5882 (2014).

