Stock Price Predictions from News Headline
Embeddings

Ryan Almodovar
Department of Computer Science
Stanford University
ralmodov@stanford.edu

Abstract

The financial market is known to be informationally efficient, so stock prices
reflect all known information and price movement can be in response to news or
events [Fama, 1965]. Several Natural Language Processing (NLP) techniques have
been applied over the recent years to explore financial news for predicting market
volatility, such as bags-of-words, noun phrases, named entities, and sentiment
analysis [Kogan et al., 2009; Schumaker and Chen, 2009]. For this project, we
attempt to predict the SP 500 index stock price changes for upcoming days based on
published headlines by exploring and applying some recent novel NLP architectures
focused on embedding vector representing words or sentences, such as BERT
[Devlin et al, 2018], Universal Sentence Encoder [Yang, 2018], and Word2Vec
[Mikolov, 2013].

1 Introduction

The ability to predict stock prices has been a great interest for public companies and investors to be
able to adjust to market volatility and manage portfolio profits and losses. The interest and motivation
for this task is that predicting the stock market accurately was thought to be near impossible based on
its stochastic nature (Malkiel, 1973), though with the advent of Al applications and Deep Learning,
we may be able to gradually discover features that can guide our understanding of this system that
were previously thought unattainable. The goal is to predict the change of S&P 500 index based on
recent published headlines on a day-to-day basis. The input to the algorithm are collections of news
headlines, and the training set combines them with labels if the stock increased or decreased on the day
they were published. Depending on the model described in the Methods section (Word2Vec, BERT,
Universal Sentence Encoder), the headlines are transformed into word/sentence vector embeddings
and used as input to the model. Each of the models map the output to the probability range [0,1],
where a 0 indicates that the SP 500 index is expected to decrease for the day, or 1 for an expected
increase.

2 Related work

Several works have been published with interest in this problem, or similarly predicting the prices of
individual companies rather than the general S&P 500 index. For example, Ding et al. used the Neural
Tensor Network model to create trainable event embeddings with entities. Chen et al. separated
news into categories based on earning rates, then predicted which category will have future price
movement. Bao et al. decompose the noise using wavelet transforms, apply stacked autoencoders to
generate most important features and then apply the output to an LSTM. Qin et al. uses a dual stage

CS230 Deep Learning (Winter 2019), Stanford University, CA.

RNN model for time series prediction, though applying 81 stocks’ previous prices as input. Ryo et al.
create a prediction based on numerical and textual information, using both an RNN and LSTM to
capture significant events. The majority of these listed are based on time series based architectures
such as LSTMs and RNNss to interpret statistical data, though only a few which use the generalized
semantic embedding for headlines.

3 Dataset and Features

From the UCI News Aggregator Dataset provided by Kaggle [source], the data was first preprocessed
by filtering invalid characters in each sentence. It was then filtered to be categorized only by business
and technology sources. Downloaded SP 500 historical data from Yahoo Finance between 03/10/2014
and 10/01/2014 to match recorded news dates from the UCI News Aggregator Dataset (UCINA). The
timestamp for each row in the UCINA was labeled in milliseconds, so a preprocessing step of each
entry into the date format was required to be compatible with the stock data. From the stock data,
binary classification labels were generated for each day by computing the opening and closing price
delta values for each day, defined by:

y(l) =]]'{Dc()ip)en - Dg)ose} (D

Once the labels were generated, the data was then shuffled using a fixed random seed for reproducibil-
ity, and then split to create corresponding train, validation (dev), and test sets. The split percentages
for the train, dev and test sets were 80%, 10%, 10% and resulted in 146,731, 18,342, and 18,343
total rows for each respective subset. To label the day offset variants, the rows required to be filtered
even further since n days in advance may not have been present in the finance dataset. The headlines
were then supplied as input for each model which subsequently would process them as embeddings
respective to there architecture, as described in the following section.

4 Methods

Since text embeddings have become ubiquitous in modern NLP applications, the algorithms explored
for this project mainly focus on the variations of the alternate embedding methods. The implementa-
tions that were explored included Word2Vec (W2V), Universal Sentence Encoder (USE), and the
state-of-the-art Bidirectional Encoder Representations from Transformers (BERT). GloVe was also
added but due to time constraints there was not enough time to get a working implementation and
evaluate the results before the deadline. These models were chosen based on the idea of how different
methods for text embedding can influence the outcome of this classification task. For example,
Word2Vec is based on unidirectional word embedding, USE is sentence embedding, and BERT is the
bidirectional sum of each token, segment, and positional embeddings.

The goal is to predict whether the market price either decreases or increases for the day given a set
of headlines, so the problem can be defined as a binary classification task. Thus, the binary cross
entropy loss function was used for the Word2Vec and USE models. The default implementation of
the BERT model was implemented only with a categorical cross entropy softmax classifier, though
by creating a custom module to evaluate N=2 categories, it effectively has the same outcome as a
binary cross entropy sigmoid classifier. The binary cross-entropy loss function for the output layer of
each model implemented is defined as:

1 _ . . A ¢
J(0) = —— 3 [y log(0a(z0)) + (1 =y log(1 — ooz)] + 5= D07 @)
i=1 7=1

where 2() = WTz® 4 p, gg(z(i)) = W, m is the total number of samples, X is the

standard L2 regularization rate, and 6 are the trainable weights of the model. Adam (Kingma, 2014)
was the main optimizer used for each model.

4.1 Word2Vec Overview

For the Word2Vec (W2V) model, I explored different variations as described in the subsections
below, including a baseline as a single densely connected layer defined by a ReLU activation function,
without any pre-trained vectors. The headlines were first tokenized to remove stop words and invalid

Semantic Textual Similarity

Fed official says weak data caused by weather, should not slow taper to
Fed's Charles Plosser sees high bar for change in pace of tapering
US open: Stocks fall after Fed official hints at accelerated tapering 08
iPad Air 2 and iPad Mini 3 Release Date, Price Specs Rumors: Apple's Latest
Apple may introduce a bigger iPad early next year 06
New iPad Mini 3 and iPad Air 2 release date possibly in 3rd quarter
Google acquires drone maker Titan Aerospace
Google purchases solar-powered drone maker 04
Why Google Just Bought A Drone Company
Facebook tries to defuse backlash over its secret psychology experiment on users 02
Facebook conducted hundreds of psychological experiments
UK data protection authority to speak to Facebook about psychological study a6

Ny A
& S \\0% & \\z'l‘ $&

8 o

& O O @7

& 2® \b ?S}Q 9* \(\ & 6®° &¥ & A
& e ,éo o i

A (5‘ &° 8

)
é\q @)

Figure 1: Headline Semantic Similarity

characters. Next, the texts were transformed into sequences of integers and padded to match the
embedding size sequence length.

4.1.1 Pre-trained Variation

Initializing word vectors with those obtained from an unsupervised neural language model is a popular
method to improve performance in the absence of a large supervised training set (Collobert et al.,
2011; Socher et al., 2011; Iyyer et al., 2014). For this variation, word vectors that were trained on 100
billion words from Google News have dimensionality of 300 and were trained using the continuous
bag-of-words architecture (Mikolov et al., 2013). Words not present in the set of pre-trained words
are initialized randomly.

4.1.2 Pre-trained + CNN Variation

In addition to the embeddings from the pre-trained variation, I also included a CNN with max-pooling
for sentence classification (Kim, 2014). A convolution operation involves a filter w € R which is
applied to a window of h words to produce a new feature. For example, a feature c; is generated from
a window of words x;.;+p—1 by ¢; = f(wAZ;.;4n—1 + b) where f is the hyperbolic tangent. The
filter is then applied to each window of words in a sentence {Z1.,, 2:h41, ---, Tnh+1:n }t0 produce
a feature map ¢ = [cy, ¢2, ..., Chp+1]. Next, a max pooling layer (Collobert et al., 2011) is applied
to obtain ¢ = max{c} which represents capturing the most important feature for each feature map.
Finally, the output of the max pooling layer is the applied to a single fully connected layer with a
sigmoid activation to obtain the prediction.

4.2 BERT Overview

BERT (Devlin et al. 2018) is designed to pre-train deep bidirectional representations by jointly condi-
tioning on both left and right context in all layers. As a result, the pre-trained BERT representations
can be fine-tuned with just one additional output layer to create state-of-the- art models for a wide

BERT (Base) BERT (0 day offset)
10000
10000
| 894 8000 e 8000
g 6000 S — 6000
2 2
-4000 -4000
t 596 + 32
-2000 -2000
- ++ - ++
Predicted Predicted
BERT (1 day offset) BERT (2 day offset)
7500 5000
84 726
6000 4000
S 4500 S
= = - 3000
- 3000
+ 143 + 618 -2000
+ +
-1500
-1000
- ++ - ++
Predicted Predicted

Figure 2: BERT confusion matrices: fig:ex3-a describes the first subfigure; fig:ex3-b describes the
second subfigure; fig:ex3-c describes the third subfigure; and, fig:ex3-d describes the last subfigure.

range of tasks, such as question answering and language inference, without substantial task-specific
architecture modifications. The pre-trained BERT-Base model as described in the paper is evaluated
in this project, as well as fine-tuned variations of the labels separated by same day, next day, and 2
day offsets.

4.3 Universal Sentence Encoder Overview

The headlines were extracted as input for the Universal Sentence Encoder which uses a Transformer
architecture (Vaswani et al., 2017). The context aware word representations are converted to a fixed
length sentence encoding vector by computing the element-wise sum of the representations at each
word position. The encoder takes as input a lowercased PTB tokenized string and outputs a 512
dimensional vector as the sentence embedding. Using cosine similarity between two embeddings z
and y:

L
Il - llyll

we have insight of the headline semantic similarity as seen in the figure. 4

cos(z,y) =

3

5 Experiments/Results/Discussion

The hyperparameters that were modified for the different variations include the learning rate, batch
size, number of training epochs, and dropout, as well as the shift of label offsets by 0, 1, and 2 days
based on the reasoning that headlines may take some time before being read and understood by stock
traders to have enough influence on the market. Due to time constraints and memory issues on the
AWS EC?2 instance, not all variations of the hyperparameters were able to be experimented on for
each of the 3 different models, so the best performing variants after few test runs were chosen as the
hyperparameter values as detailed in Table 1.

Model Variation

Precision Recall Accuracy ROC AUC

Word2Vec Base 25.67 31.67 52.19 48.73
Pre-trained (Google News dataset) 39.21 0.76 58.31 50.07
Pre-trained+CNN+Dropout(0.25)+L2(0.01) | 42.34 1.2 62.07 50.80

BERT Base (cased, same day) 38.65 91.62 40.38 49.79
Fine-Tuned (same day) 40.5 0.4 61.16 50.02
Fine-Tuned (next day) 63.00 2.26 59.00 50.66
Fine-Tuned (2 day) 45.98 12.05 55.33 50.52

USE Base - - - -
Dropout (0.2) + L2 (0.001) - - - -

Table 1: The variations include hyperparameter tuning, and submodels from the core Model. The
Universal Sentence Encoder results were unable to be retrieved due to time constraints and out of
memory errors while running on the AWS EC2 instance.

The confusion matrices listed for each of the BERT day offsets reveals that each fine-tuned model
on the training data tends to predict the market will decrease much more often than increase. The
matrix for the BERT-Base however tends to over predict that market will increase. This can be due
to the thousands of negative headlines being combined for each single day, and with the current
implementation, each headline may have an equal effect of influencing the stock market rather than
being properly weighted in comparison with more influential entities. Interestingly, it appears that
the precision evaluation for next day label offsets on the BERT model increased drastically from 40.5
to 63.0, indicating that news headlines may have more influence on the day after it is published.

Although each model had a relatively smooth loss and accuracy progression on the training set,
almost all of the models experienced significant overfitting on the training data since the loss value
on validation set gradually increased over each iteration. To mitigate this, I added dropout layers and
L2 regularization terms in each densely connected layer and after the max pooling layer of the CNN
word2vec model variation. This appeared to have a small regularization effect since the validation
accuracy increased slightly, but was not significant to overcome the overfitting problem in general.

6 Conclusion/Future Work

The algorithm that appears to be the highest performing by a slight margin is the Word2Vec model
combined with the CNN and pre-trained word vectors from the Google News dataset. This is
most likely the case since the pre-trained vectors were sourced from Google News and most likely
contained feature similarities to the UCI News Aggregator dataset. Although BERT and Universal
Sentence Encoder are also pre-trained, it could be that the headline structure differs grammatically
from typical sentences of the much larger corpus that these models were pre-trained on. For future
work, if I had more time I would also want to augment BERT and Universal Sentence Encoder with
more advance models on the embedding input vectors, since it seemed to improve the accuracy of the
word2vec model by about 3%. I would also look into factoring in other features rather than only the
label, such as the delta values, time series analysis, or the categorized hostnames and draw further
insights by incorporating those features in the overall model.

Github link: https://github.com/rjalmo/cs230

References

Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Devlin, J., Chang, M. W., Lee, K., Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805.

Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., ... Sung, Y. H. (2018). Universal sentence
encoder. arXiv preprint arXiv:1803.11175.

Ding, X., Zhang, Y., Liu, T., Duan, J. (2015, June). Deep learning for event-driven stock prediction. In
Twenty-Fourth International Joint Conference on Artificial Intelligence.

Chen, K., Zhou, Y., Dai, F. (2015, October). A LSTM-based method for stock returns prediction: A case study
of China stock market. In 2015 IEEE International Conference on Big Data (Big Data) (pp. 2823-2824). IEEE.

Collobert, Ronan, et al. "Natural language processing (almost) from scratch." Journal of machine learning
research 12.Aug (2011): 2493-2537.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... Polosukhin, I. (2017). Attention
is all you need. In Advances in Neural Information Processing Systems (pp. 5998-6008).

