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Abstract. Typical HDR image reconstruction
requires the use of multiple LDR input im-
ages, camera sensor information and complex
algorithms with multiple hyperparameters. We
present a CNN-based network trained to input a
single LDR image and generate a corresponding
HDR image with exposure correction. The pro-
posed network consists of two major parts: an
LDR encoder and an HDR decoder, with skip con-
nections to allow for efficient exchange of informa-
tion between the layers. The fully-trained model
achieves a PSNR of 15.05 dB, and produces im-
ages which clearly demonstrate exposure improve-
ment. Additionally, the network is completely au-
tomated, and doesn’t require a user to set any pa-
rameters. Based on visual evaluation, the model
effectively infers important details of regions loss
to exposure saturation will help to improve the
performance of other classification networks em-
ployed as a preprocessing network.

1 Introduction

In the domain of Computer Vision (CV), the problems of
exposure normalization and detail preservation for digital
images present an important challenge. Optoelectronic im-
age sensors suffer from the problems of under- and over-
exposure. Both conditions result in image data loss. While
this may be perceived by both humans and machine al-
gorithms performing feature extraction and analysis, this
problem is greatest for machines; the human eye is capa-
ble of a wider dynamic range than artificial sensors, and is
able to rapidly change sensitivity by adjusting the dilation
of the pupil.

High dynamic range (HDR) imaging is a modern
solution to this problem. It is the compositing and tone-
mapping of images to extend the dynamic range beyond
the native capability of the capturing device [1]. The con-
ventional non-Deep Learning (DL) approach is to use HDR
sensors that interleave multiple captures (typically 4-8) at
different exposure settings and reconstruct the scene into a
single image using a tone mapping algorithm. These tone
mapping algorithms have multiple parameters which need
to be tuned on a case by case basis based on subjective
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human analysis. This is one major drawback of the con-
ventional approach. We propose an alternative solution: to
utilize convolutional neural networks (CNNs) to infer the
missing color and feature data by mitigating loss of detail
in images due to the limited exposure range in a single
capture from a single mid-exposure frame.

2 Related work

This area of research is quite specific, and represents much
unexplored potential. We build upon the research of two
primary groups: Marnerides et al. [2] and Eilertsen et al.
[3], both of which published relatively recently. Both groups
used CNNs to reconstruct LDR content into HDR. They
established that neural nets may indeed approximate the
reconstruction of missing information in images.

We do not follow the aforementioned researchers’ model
architectures exactly, but do draw from their methods, and
use their results to inform our own research decisions.

3 Data

Raw image data in Nikon Electronic Format (NEF) files
is obtained from the Fairchild HDR Photographic Survey
Dataset [4], which provides 1035 images in 105 scenes, each
with approximately 9 pictures at different exposures, one
f-stop apart. In addition, locally tone-mapped renders are
available for each scene; this is a raster image with each of
the exposures fused and adjusted to be appealing to sub-
jective human evaluation; these images serve as the ground
truths.

Fig. 1. Three example scenes from the Fairchild HDR Photo-
graphic Survey dataset [4]. Note the potential high-dynamic
range applications, which are manifest as dark regions proxi-
mate to bright regions. The human eye is capable of sufficiently
wide dynamic range to perceive detail in both regions, while
machine sensors fail to do the same in LDR imaging mediums.



As the dataset images are of larger dimensions, the im-
ages were further subdivided by scaling and cropping, ac-
cording to the dimensions of the HDR render. Conventional
data augmentation techniques such as image mirroring and
rotations in different directions were further employed to
augment the limited input data set and improve variance
metrics. Altogether, these techniques provide 14 sample
pairs per LDR exposure of a scene.

The augmented dataset is split into train, development
and test sets in the ratio of 80/10/10 (Table 1. Since the
dataset contains multiple captures per scene (at different
exposures), the split is done on a per scene basis to en-
sure that the development and test datasets are previously
unseen by the model.

Table 1. Dataset augmentation and splitting, no. of samples.
Dataset split
Train Dev Test

10318 1260 1260]]

During training, a serious misalignment issue was dis-
covered between input and output pairs. Due to cropping
and scaling performed on the HDR renders, the field of
view became different from the input raw files. Data aug-
mentation, which employed rotations and flips, further ex-
acerbated this issue. The resultant original model produced
blurry and misaligned images with heavy artifacts. It was
resolved by adding an image registration stage before data
augmentation, using the Enhanced Correlation Coefficient
Mazimization[5] algorithm in the implementation provided
by OpenCV.

4 Model

Our CNN architecture includes convolutional, pooling, and
deconvolutional layers.

4.1 Loss

Our primary loss function is L1 loss (or mean absolute er-
ror). We also included L2 loss (or mean square error) since
that helped improve PSNR. Moreover, to help reduce noise,
total variation (TV) loss was also added. This is used to
reduce the gradient between adjacent pixels, which has the
effect of de-noising the image. We selected a linear combi-
nation of L1 and TV loss as our final loss function.
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4.2 Topology

A diagram of our architecture is presented in Figure 2.
We chose to use an autoencoder because of its ability to
transform high-dimensional input to a lower-dimensional
latent representation, and likewise the decoder was used
to reconstruct the full-dimensional data [6]. More specifi-
cally, our autoencoder has the role of ”denoising” [7]; that
is, it is trained with corrupt input images (LDR images
with exposure data loss), with the goal of extracting im-
portant features, and reconstructing original HDR, images
with complete information.
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Fig. 2. Neural network model architecture diagram for expo-
sure normalization in digital images. This final model featured
22,467,992 total parameters, with 58.96% trainable and 41.04%
non-trainable. The LDR encoder used VGG-16, which requires a
series of convolutional layers and max-pool layers. The 7x7x512
latent representation then passes through the HDR decoder,
which uses deconvolution (upsampling) layers in combination
with leaky ReLU (o = 0.3) and skip-connection points.

The encoder is comprised of the first five 5 of the VGG-
16 network with the fully-connected layers removed. This
is followed by a 7 x 7 x 512 convolution layer, the small-
est in the network, which acts a compressor for the latent
representation code. The decoder comprises 6 stacked con-
volution and deconvolution (upsampling) layers, doubling
the dimensions to go from the compressed latent represen-
tation back into the full 224 x 224 x 3 HDR RGB image
output.

The final architecture uses 6 skip connections, to feed
the features back to decoder to help image reconstruction.
The intuition behind multiple skip connections is to pro-
vide the decoder with both low level features from initial
layers and high level features from deeper layers. Finally,
input image is also fed back and used for reconstruction.
This was done, since most of the high resolution detail is
lost during feature extraction which might be useful for im-
age reconstruction. All the connections were added before
the max pooling layer of decoder to avoid any loss in data.
We experimented with models consisting of different num-
ber of skip connections to converge on the most optimal
architecture for our dataset.

The input and output images are normalized to be be-
tween 0 and 1, each of the three 8-bit channels are divided



by the maximum value of 255. This makes the sigmoid
functi noespecially suitable for use as the activation for
the output layer, since their ranges coincide.

We experimented with both ReLU and leaky ReLU
(a = 0.4) activations for all our convolution and deconvo-
lution layers. For the final output layer activation, we ex-
perimented with both ReLU and sigmoid activation. Since
ReLU allowed values above 1, this leads to saturation and
color shift in output images, and hence the final architec-
ture uses sigmoid activation.

4.3 Training Strategy and Hyperparameter
Tuning

In order to augment our model’s comprehension of digi-
tal images, we initialized our encoder section of the model
with pre-trained VGG-16 weights [8]. This practice is com-
monplace in the CV research community. Initially, we froze
all VGG-16 layers from training. The two additional layers
added after VGG-16 were added and trained to help refine
the features with respect to our dataset. All the added de-
convolution and skip connection layers were initialized us-
ing the default Glorot uniform initializer in Keras [9] and
trained on our dataset.

Since our network outputs image, any expected loss
function should look at pixel-wise comparison and use the
sum over all pixels and on all examples in a mini-batch. We
considered L2 loss as the first choice, as it directly helped
improve our evaluation metric of PSNR. However, we no-
ticed that L1 loss produced sharper images compared to
L2 loss, but it had more checkerboard like artifacts. To-
tal variation loss helped to make the images smoother and
reduce these artifacts, by reducing the gradient of pixels
across rows and columuns.
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Fig. 3. Train and development set loss over 20 epochs of model
training. We employed a combination of total variation and L1
loss

We also noticed that our model was overfitting the
training set due to the lack of training examples. We ex-
perimented with dropout and L2 regularization of bias and
kernel in all our convolutional layers. This helped reduce
overfitting, however, this led to the network not being able
to fit training set well. To improve upon this, we set some
layers of VGG-16 encoder to be trainable. The approach

to setting this was slightly different compared to typical
transfer learning. Instead of allowing the last few layers to
be trainable, we set the layers with a direct skip connection
to the decoder as trainable. This approach is intuitive for
our application, since refining the layers feeding directly to
the decoder should give more immediate improvement. We
tried models with other variations as well, however, allow-
ing more layers to train degraded results probably due to
lack of enough training data.

4.4 Evaluation Metric

Peak Signal to Noise Ratio (PSNR) is an established met-
ric in CV, used to quantitatively compare different encod-
ings of the same image [10]; we implemented this function
as the evaluation metric for our Keras model. OpenCV’s
built-in HDR, tone-mapping functions were used to gener-
ate the baseline metrics; all LDR captures along with their
exposure times were used to compute the camera response
function using Debevec’s weighting scheme [11], and were
then mapped and fused into an 8 BPP RGB representation
using Reinhard’s algorithm [12]. These images, compared
against the locally rendered HDR images using PSNR, form
the baseline metric.
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where N is the number of pixels.
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Fig.4. Train and development set PSNR over 20 epochs of
model training, as given by equation 2

Apart from PSNR, visual inspection plays a very impor-
tant role in evaluating image reconstruction. Importantly,
PSNR declines sharply in regions of movement with abrupt
changes in contrast, since it compares pixel-to-pixel differ-
ence in color channel intensity. Since there were only around
100 scenes, it was reasonable to visually inspect random
samples and known scenes for qualitative evaluation.

The structural similarity index (SSIM) measures the
similarity between two images, where SSIM : (z,y) —



[—1,1] with z and y being the windows of their corre-
sponding image (including average, variance, and covari-
ance) [13]. We implemented the SSIM in our code; while it
did approach 1 during training we deemed PSNR to be a
more useful metric for analysis as it had more correlation
with visual quality of the image. For this reason we omit
the detailed analysis for SSIM.
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Fig. 5. Train and development set SSIM (structural similarity)
over 20 epochs of model training. Note that as training advances,
our SSIM does approach 1, albiet slowly.

Fig. 6. Left to right: an underexposed LDR image, an overex-
posed LDR image, an image generated with OpenCV’s baseline
method, and the ground truth rendered version. Note that this
final version is the most photorealistic to human observers.

5 Experiments/Results/Discussion

Our final tuned convolutional autoencoder neural network
achieved a PSNR of 15.05 dB on the test dataset (new
scenes reserved from training and development), less than
the multi-exposure OpenCV tone-mapped baseline of 27.81
dB (see Table 2).

Table 2. Dataset PSNR metrics for baseline (OpenCV tone-
mapping) and final neural network (Convolutional Autoen-
coder) models.

Dataset PSNR [dB]

Train Dev  Test

Baseline (OpenCV)|27.90 27.80 27.81
Neural Network [16.35 16.10 15.05

Model

Compared with the baseline OpenCV renders, the con-
volutional autoencoder network exhibits high bias (>10
dB), but comparatively low variation between the train,

dev and test datasets (this is true before the train dataset
begins to overfit and validation PSNR saturates at approxi-
mately 16.5 dB most model iterations). L2, L1, and dropout
regularization were experimentally introduced to attempt
to raise the test dataset PSNR; while these raised PSNR
to a maximum of 16.86 dB and reduced variance, they did
not manage to penetrate 17.0 dB.

While withholding the dataset size (1,000 or 5,000 or
10,000 example pairs), the PSNR converges more slowly
and saturates at a lower level than with the full set. This
suggests that other factors, such as the limited training
examples and lack scene diversity, may play a greater role
than the actual network architecture or its hyperparameter
tunings.

Fig. 7. Development dataset examples through the final model.
Left to right: Input (z), Reconstruction (§), and Ground Truth

(v)-

The network generates notably different images from
the input, inferring higher light intensities and colours for
regions such large contiguous regions such as the ground
and sky. Under- and overexposed images appear more bal-
anced in terms of colour and brightness, in this respect
bearing more similarity to the ground truth reference. In-
terestingly, latent features such as clouds or shade thought
to be lost to saturation re-manifest with noise.



Fig. 8. Under and overexposed input reconstructions. Left to
right: Input (z), Reconstruction (g), and Ground Truth (y).

As shown in figure Figure 8, the model performs well
on certain overexposed images, where it is able to recover
the some of the lost details. It also recovered part of the
tree trunk and leaves in the example shown above.

The Fairchild HDR dataset contained many outdoor
scenes of nature, which exemplify a common problem in
outdoor photography: overexposure due to sunlight. The
consequence is a trade-off where the sky appears completely
white, or the sky appears normal but other objects appear
dark. Because these scenes were pervasive throughout the
training dataset, the model tends to overgeneralize between
disparate overexposed regions poorly, filling them with a
light blue color as in Figure 9; in that example, the dome
at the top of the building appears translucent to the sky
with green foliage at its edges.

Fig. 9. Feature reconstruction error on dome. Notice that the
model appears to act as a ’sky-filler’, replacing even parts of
structures with the most common true color of overexposed re-
gions: sky-blue. Left to right: Input (z), Reconstruction (), and
Ground Truth (y).

Another limitation of our model was its failure to ef-
fectively recover high resolution detail from images, often
leading to hazy outlines or ghostly artifacts in regions with
object boundaries. Checkerboard and block artifacts were
more prevalent in earlier model iterations, but were reduced
by lower the filter sizes of deconvolution (upsampling) lay-
ers and with the introduction of more trainable weights.

6 Conclusion

Our CNN autoencoder model functions as a proof-of-
concept for the use of neural networks in the global re-
construction of HDR images with latent regional features
from strictly LDR input images, which will only become

a problem of greater importance as the quantity of photo
sensors increases. Compared with existing algorithmic tone-
mapping methods, our image quality was poorer, the colour
and gradients being noisier, and features less sharp. The
autoencoder achieved a maximum test dataset PSNR of
15.05 dB, lower than the 27.81 dB of the baseline render
with OpenCV.

We believe that with a much larger dataset that encom-
passes expansive and diverse collections of real-life scenes,
a neural network similar to ours would be able to surpass
conventional inverse-tone mapped algorithms and achieve
results comparable to multi-exposure tone mapped results.
Their weights can carry great memory of image features
from the scenes they were trained with, and can infer de-
tails that are suggested but not present in the inputs. This
conclusion is supported by the measurable rise in validation
metrics that we witnessed whenever more training exam-
ples were introduced.

Future improvements may come from the incorporation
of hybrid network components, such as the use of GANs
to achieve photorealistic output, discriminating for image
quality metrics such as the PSNR metric itself, measure-
ments of sharpness and natural colours. With greater com-
puting capability, it would also be worthwhile to visualize,
train and tune individual convolutional layers.

See our functioning implementation on GitHub at
https://github.com/BayBenj/cs230-proj.



Contributions

All three group members collaborated on paper-writing, ex-
perimenting with and analyzing various model parameters.
Additionally:

Vincent performed data pre-processing and data augmen-
tation (converting raw format to jpeg, scaling, cropping,
etc.), implemented model updates (additional encoder lay-
ers, additional skip connection, dropout layers), error anal-
ysis (catching image alignment issue), worked on hyperpa-
rameter tuning.

Rohit implemented skip-connections based network, im-
plemented PSNR metric, loss functions (L1, L2, total vari-
ation), implemented initial image alignment function, ex-
perimented with leaky ReLU activation, bilinear upsam-
pling. implemented and experimented with regularization
and VGG-16 trainable/frozen layers

Benjamin implemented initial VGG-16 loading, led di-
agram creation for training, development, and test loss,
PSNR, and SSIM, oversaw the model topology diagram,
formalized all our loss equations, implemented batch nor-
malization in model, used in each layer of the HDR decoder,
decoupled main driver from model code, led poster design,
located the majority of cross-references.
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