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Abstract

Bitcoin algorithms that help predict the direction of price trends can help investors
make important financial decisions. This paper tries to predict the direction of Bit-
coin prices in the near future. The problem is simplified into a binary classification
problem of whether the price increases or decreases. The three component model
used consists of a Fourier transform, stacked autoencoder (SAE) and long-short
term memory (LSTM). This model achieves an accuracy of 69.8%.

1 Introduction

Financial markets have grown more prominent online and thus, produce a great amount of data for
analysis. With so much data, the application of neural networks to search for patterns have become
more common. As one of the most well-known cryptocurrency, Bitcoin has garnered much attention
in the past decade. The problem of predicting Bitcoin price trends can aid buyers and sellers of
Bitcoin in making decisions about whether to act.

For this project, the task is simplified to predicting the direction that the Bitcoin price trending. The
input to our algorithm is a time series of Bitcoin data at 1-minute intervals, each data point containing
two features: the weighted price and volume of exchanges. We then use a Fourier transform to
denoise the input, feed it into a stacked autoencoder to generate features and finally, run it through an
LSTM to make the final binary classification prediction. The output is a prediction of whether the
price will increase or decrease in the next 100 minutes.

The described algorithm is called WSAEs-LSTM because the original paper by Bao et al. [1] used
Wavelet transforms, stacked autoencoders (SAE) and LSTMs. Since we used a Fourier transform
insted of a Wavelet transform, this paper will be calling the architecture FSAEs-LSTM.

2 Related work

Our project is based on the WSAEs-LSTM architecture described in Bao et al. [1], which aims to
predict stock market prices. Instead of using a wavelet transform for denoising, we use a Fourier
transform instead. We also referenced a paper with a similar classification task by McNally et al.
[2]. McNally et al. compares the accuracy of an RNN and LSTM in order to predict the direction of
Bitcoin price and their results were an informative benchmark.
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3 Dataset and Features
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Figure 1: Visualization of the Bitcoin Historical Data Kaggle dataset

We use data from the Bitcoin Historical Data Kaggle dataset [3], which contains bitcoin pricing data
at 1-minute intervals and spans from December 1, 2014 to January 9, 2019. In total, there are around
2 million data points where data point consists of seven features, but for our project we only use
the weighted price and volume. Figure 1 shows the weighted price of bitcoin over the entire dataset
timeseries. There is a large left skew in the graph, with the rising and falling popularity of Bitcoin in
the recent years.

For intervals during which no bitcoin was traded, the dataset is populated with NaN values. These
values consisted of approximately 5.4% of the dataset. We preprocessed the dataset by discarding
densely populated NaN areas and replacing NaN values in sparsely populated areas with interpolated
prices between the previous and next known price values. For interpolated prices, we also set the
volume to 0. The prices in the dataset are then rescaled by subtracting the mean price across the
whole dataset and then downscaling by a constant factor.

The dataset was split 70%-15%-15% to make our training, dev and test sets. Originally, we randomly
shuffled the training data right before splitting the train/dev/test sets for the LSTM. However, this does
not capture the temporal nature of future test data in real life and might make it easier to memorize
the dataset and interpolate values onto the test set. Thus, the splits are done sequentially to mimic
training on "past" data and testing on "future" data. This also causes an imbalance in the training, dev
and test distributions, which might hinder the learning process.

4 Methods

We used a CNN for our baseline and combined a Fourier transform, stacked autoencoder and LSTM
for our model. For both architectures, we use Adam optimizer and binary cross entropy loss for
optimization and chose our metric to be accuracy.

4.1 Baseline

We adapted our baseline CNN model and parameters from the architecture described by Tsantekidis
et al. [4] and used Algorithmia [5] as a Pytorch reference. The architecture is a three layer CNN with
hidden layer sizes 16, 16 and 32. This feeds into a maxpool layer and two linear layers that outputs
16 values and 1 value, respectively. The final output is put through a sigmoid function.

Simple hyperparameter tuning for learning rate gives a value of around 4.6e-5. After 100 epochs, the
accuracy is around 60%, demonstrating that a neural network can beat random guessing. It is possible
that more rigorous tuning including architecture hyperparameters could increase the performance of
the baseline.

4.2 Fourier transform + stacked autoencoder + LSTM

The first procedure in this model is the Fourier transform. The Fourier transform computes the
frequency content at various bins, which assists in denoising. In addition to the Fourier transform
output, we include phase information by applying the arctan function to the real and imaginary
components of the Fourier transform. This phase information may be used to determine whether a
sine wave is increasing or decreasing at a given time segment.



Then, we trained a three-layer stacked autoencoder to extract high-level features that represent the
data in a more condensed vector. Each layer’s output dimension has half the dimensionality of the
input, with sigmoid activations. Each layer was trained individually, with the loss corresponding to
that layer’s reconstruction loss.

Finally, the dataset has a timeseries component, so using an LSTM captures temporal patterns in the
data. The input to the LSTM is ten consecutive data points stacked to create ten timesteps in a series.
The output is whether the price goes up or down after one minute from the end of the time series. The
LSTM feeds into a linear layer that outputs one value which gets put through a sigmoid function for
classification. An output value above 0.5 was considered a positive label (increasing price), whereas
a lower value was considered a negative label (decreasing price).

5 Experiments/Results/Discussion

5.1 Hyperparameter tuning

Dev Dev | Training | Training
Hyperparameters Accuracy | Loss | Accuracy Loss
LR: 3.2e-5, Dropout: 0, Epochs: 200, # layers: 1 72% 0.64 77% 0.61
LR: 1.3e-4, Dropout: 0, Epochs: 100, # layers: 2 71% 0.65 81% 0.61
LR: 3.6e-4, Dropout: 0.2, Epochs: 100, # layers: 2 69% 0.61 88% 0.39
LR: Ie-3, Dropout: 0, Epochs: 100, # layers: 2 69% 0.73 93% 0.26
LR: 2.8e-5, Dropout: 0, Epochs: 400, # layers: 1 68% 0.64 82% 0.56

Table 1: Hyperparameter tuning: learning rate (LR), dropout, # of epochs, # of LSTM layers

The hyperparameters in the Table 1 are the five that yielded the highest dev accuracies. We automated
the hyperparameter search for learning rate and dropout with a grid search strategy. The learning rate
search tried ten values in logspace from le-1 to le-6, then narrowed down to search ten more values
from 1le-3 to le-5. The dropout value was picked between the values 0, 0.2 and 0.5.

The number of LSTM layers (1, 2, or 3) and number of hidden units per layer (3 or 5) were manually
tuned, then the learning rate and dropout were re-tuned for the top configurations. We also used early
stopping for each run to train until the epoch when the accuracy is approximately the highest. The
mini-batch size was 50, which is based on the mini-batch size of 60 in Bao et al.’s architecture [1].

5.2 Results
Each model is run five times and the average metrics are calculated. The average accuracy, precision,
recall and F1 scores are displayed in Table 2.
The top two hyperparameter sets found during tuning are used.
e Hyperparameter set #1 is 3.2e-5 learning rate, no dropout, 200 epochs and 1 LSTM layer.
e Hyperparameter set #2 is 1.3e-4 learning rate, no dropout, 100 epochs and 2 LSTM layers.

Model H Accuracy | Precision | Recall F1

Baseline CNN 60.8% 66.7% 72.82% | 64.78%
FSAEs-LSTM with hyperparameter set #1 || 69.4% 74.24% | 63.64% | 67.22%
FSAEs-LSTM with hyperparameter set #2 || 69.8% 70.88% 65.44% | 67.82%

Table 2: Results from baseline and LSTM models

The best performing model is FSAEs-LSTM with hyperparameter set #2, achieving an accuracy of
69.8%. Figure 2 shows the accuracy and loss curves for a run of this model.
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Figure 2: Accuracy and loss curves for the training and dev sets.

Overall, FSAEs-LSTM performs better than the baseline, though the baseline CNN seems to do better
when it comes to recall. The two hyperparameter sets achieve pretty similar results and the minor
differences can be attributed to noise.

5.3 Discussion

Both the baseline and FSAEs-LSTM were able to exceed the 50% expected accuracy from random
guessing, and FSAEs-LSTM achieved about 10% higher accuracy than the baseline model. It is
important to keep in mind that there might be a bias because more effort was spent on optimizing the
performance of the FSAEs-LSTM model.

Our results are not comparable with the results found by Bao ef al. because we are not making price
predictions, rather we are solving a classification problem. Therefore, it would be better to align our
results with a more similar problem, like the one posed by McNally et al. [2]. Their problem slightly
differs from ours in that there are three classes; in addition to price increasing and decreasing, they
also have a no change in price class. We expect our accuracy to be better since our task is slightly
easier and we are applying a more complex model to solve the problem. Indeed, we find that the
69.8% FSAEs-LSTM accuracy beats the 52.78% vanilla LSTM accuracy presented in the paper.

The main problem faced by FSAEs-LSTM is overfitting. Without any regularization, the dev set
tends to perform much worse than the training set and the dev loss starts to increase after the first
hundred epochs. The reason for the overfitting is most likely that the dataset is very small. We make
the dataset even smaller by grouping together one hundred data points as an input to the Fourier
transform, then later stacking groups of ten data points to make a time series input for the LSTM.

We attempted to decrease the overfitting by adding dropout and L2 regularization as well as adjusting
the model architecture by decreasing the number of hidden layers or LSTM layers. These techniques
helped to an extent, but they tended to decrease the training accuracy and did not increase the dev
accuracy as much.

5.3.1 Analysis

To start, we analyzed whether the training/dev/test split has a good distribution. The training set is
split into 48.689% 1’s and 51.311% 0’s labels. Both the dev and test sets are split into 48.246% 1’s
and 51.754% 0O’s labels. Thus, the labels are similar and relatively balanced, with slightly more 0
labels than 1 labels.

Next, we looked at the confusion matrices for multiple runs. Out of 10 runs, we found that the model
was predicting false negatives more 7 out of 10 times. This could be due to the slight bias in the
labels, since there are more negative than positive labels.

Unfortunately, closer inspection into the dataset in Figure 1 reveals that there is a long tail in the first
half of the dataset where the price is relatively low. Due to the way we split our dataset, this data is all
allocated into the training set. In addition, there is a peak in price that is primarily split into the dev
set, making the dev and test distribution uneven. We decided to proceed with the sequential split of
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Figure 3: Examples of similar inputs with incorrectly predicted outputs, where negative is decreasing
and positive is increasing.

data in order to portray real world conditions, but realize that the results would benefit considerably
with more data, especially in the past year.

We also attempted to perform error analysis by visualizing the input on a normalized price vs. timestep
together with the predicted and actual label. However, it is very difficult to tell if there are patterns that
influence the error by analyzing the graph. This is most likely because the input to our FSAEs-LSTM
model receives many features outputted by the Fourier transform and stacked autoencoder in addition
to the price, but visualizing all of the features together was uninterpretable as well.

Figure 3 shows two similar inputs that our model predicted incorrectly. In both figures, the bitcoin
price decreases over time. There are no clear differences between the false positive and false negatives
in this batch.

6 Conclusion/Future Work

Two architectures were implemented: a CNN baseline and a FSAEs-LSTM model that consists of
a Fourier transform, stacked autoencoder and LSTM. The CNN baseline achieves 60.8% accuracy
and the three component LSTM model achieves 69.8% accuracy. FSAEs-LSTM is more complex,
utilizing a Fourier transform to denoise the input and an autoencoder to condense the data to get
features. FSAEs-LSTM probably performs better due to the extraction the data’s most informative
features. However, the small size of our dataset led to overfitting by the FSAEs-LSTM model so
addressing the overfitting issue better can improve the performance.

6.1 Future work

A major limitation of the dataset used is the number of training examples given. There are about 2
million rows in the dataset, some of which contain NaN values. During hyperparameter training, the
model was prone to overfitting on the training dataset, and had runs that achieved up to 99% accuracy
on the training dataset compared to ~68% on validation when no dropout was used. Although we
attempted to add regularization, additional methods to alleviate this are to use more features from
the original dataset, augment the dataset with data from other bitcoin exchanges, or apply transfer
learning from a model trained on a larger financial market.

Another avenue for future work is to incorporate the wavelet transform as an alternative to Fourier
transform. The wavelet transform does not assume a stationary signal and also incorporates time-
series information, which may allow a model to better understand fluctuations in the financial signal
[6]. Bao et al. applied wavelet transform and it worked well for denoising their dataset.

Finally, the results would benefit from profitability analysis. In order to interpret the value of the
model, it is important to understand whether the model is useful in a buy vs. sell strategy. This might
also help with interpretation during error analysis to pinpoint possible patterns in the data.



7 Code and Contributions

Github repo: https://github.com/ofzeng/cs230earthquake

Orien: Preprocessing data, Fourier transform, stacked autoencoder

Cindy: Baseline CNN and LSTM implementation, manual hyperparameter tuning
Lucas: Automate hyperparameter tuning, dataset analysis
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