CS230

Nuclear segmentation with Deep Learning

Antoine Bargé
Department of Management Science and Engineering
Stanford University

Abstract

Efficient and automated cell segmentation techniques are very important to pharma-
ceutical research. In this report, I present two convolutional neural networks and
how they were applied to a cell segmentation problem. The dataset comes from
the ISBI 2012 challenge and is composed of images of neuronal structures. The
training strategy relies on data augmentation to use the available annotated samples
more efficiently. SegNet and U-Net were implemented and compared.

1 Introduction

In the last few decades advances in the microscope technologies have led to rapid growth in the
number and resolution of cell images being captured. To obtain biologically meaningful results, it
is necessary to analyze large number of cells in multiple samples. However, doing these analyses
manually is very inefficient. One of the key barrier of the analysis is image segmentation, which is
identifying which parts of an image belong to which individual cells. Without this mapping, it is
impossible to extract statistics on cellular properties. Cell segmentation is of significant interest to a
wide range of medical imaging tasks. An example is breast cancer, where the tumor growth is an
important indicator of patients’ prospects. Nowadays, the most common method is performed by
pathologists, who examine biopsies under a microscope. Although this method is very accurate in
most cases, generally it is slow and prone to fatigue induced errors.

Cell detection methods are now evolving from employing hand-crafted features to deep learning-
based techniques. Recent methods use convolutional neural networks to address this challenge. They
perform better than other methods and are easier to be shared and applied on new data. In this project,
the input of the network is composed of microscope images and the output are the labelled images
where one can see the membranes of the cells. They are binary masks of same size of the input with
background regions labeled as 0 and membranes as 1. CNNs are used to make the prediction.

2 Related work

Many imaging technologies produce microscopic images. For example, the MIBI (multiplexed ion
beam imaging) technology produces images of cells to study cancer. In [2], one can read the results
of its application to breast cancer. The study required cell segmentation methods and one package
now widely used is described in [3]. This method being based on old techniques and not performing
very well, I focused myself on new methods, such as [1] and [4] respectively describing the U-Net
and SegNet. In [5] the Tiramisu framework is developed and can be also used for that problem. Those
are state of the art methods for segmentation problems.

Cell segmentation was also studied by A. Haigh, F.vPaasschen and J.Murphy for the CS230 class in
Spring 2018 and by W.Zhou and Y.Zhao in Fall 2018. They both use the U-Net but the applications
are different.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

3 Dataset and Features

3.1 Description of the dataset

The original dataset is from ISBI challenge Segmentation of neuronal structures in EM stacks. The
goal of the project is perform an automatic segmentation of the neural structures. The images are
representative of actual images in the real-world, containing some noise and small image alignment
errors.

The training data is a set of 30 sections coming from the drosophila first instar larva ventral nerve
cord. The corresponding binary labels are provided in an in-out fashion, i.e. white for the pixels of
segmented objects and black for the rest of pixels (which correspond mostly to membranes). All the
images are 512x512. The training and test data both contain 30 512x512 images.

On figures 1 and 2 one can see an example of the images and how they are labeled.

3.2 Data augmentation

To be able to feed a deep learning neural network, I performed data augmentation. To do so, I
use a module called ImageDataGenerator in Keras. I augment my training examples with random
transformations, so that my model never see the same picture twice. This helps prevent overfitting
and helps the model generalize better. I use the following transformations:

e Rotation-range is a value in degrees (0-180), a range within which to randomly rotate
pictures. I used 0.2.

e Width-shift and Height-shift are ranges within which to randomly translate pictures vertically
or horizontally. I used 0.05 for both.

e Rescale is a value by which it is possible to multiply the data before any other processing.
o Shear-range is for randomly applying shearing transformations. I used 0.05.

e Zoom-range is for randomly zooming inside pictures.

e Horizontal-flip is for randomly flipping half of the images horizontally. I used 0.05.

e Fill-mode is the strategy used for filling in newly created pixels, which can appear after a
rotation or a width/height shift. I used "nearest’.

New training images were generated with data augmentation, following deformations such as on
figures 3 and 4.

Figure 1: Example of Figure 2:Figure 3: Image before Figure 4:
training image. Corresponding la- transformation. Corresponding trans-
beled image. formed image.
4 Methods
4.1 U-Net

U-Nets are very appropriate for cell segmentation because they combine high resolution with local
and global features.

It consists of a contracting path and an expansive path. The contracting path consists of repeated
application of convolutions, each followed by a ReLU and a max pooling operation. Then, the
spatial information is reduced and feature information is increased. The expansive path combines the
feature and spatial information. It uses up-convolutions and concatenations with the features from the
contracting path.

On the figure 5, one can see the U-Net architecture.

Input DEM 1112 112 24 112 112 1 Predicted Mask

Conv 3x3, RelU

MaxPool 2x2
Up-conv 2x2

Dropout, then
conv 3x3, RelU

Copy

Conv 1x1, sigmoid

Figure 5: Architecture of the U-Net: starts with a 3x3 Convolution/ReL.U. Then MaxPool 2x2 —
3x3 Convolution/ReL.U are repeated three times. After that the MaxPool 2x2 are replaced by 2x2
Up-Convolution and the process is repeated again. The final layer is a 1 x1 Convolution and gives a
binary pixel mask. This mask is the output of the algorithm and is used for segmentation.

4.2 SegNet

SegNet also consists of a sequence of encoders and a corresponding set of decoders followed by
a classifier. The encoder layers extract image features using deep convolutional network. Each of
those are composed of convolutional filters, followed by ReL.Us and max-pooling to downsample
image features. The decoder layers upsample the feature map back to image resolution. The sparse
encoding due to the pooling process is upsampled in the decoder using the maxpooling indices in the
encoding sequence. The final output has the same number of channels as there are pixel classes.

On figure 6, one can see the SegNet architecture.

Convolutional Encoder-Decoder

Pooling Indices

-Conv + Batch Normalisation + RelLU
- Pooling [l Upsampling Softmax

Figure 6: Architecture of the SegNet: at the encoder, convolutions and max pooling are performed.
There are 13 convolutional layers and while doing 2x2 max pooling, the corresponding max pooling
indices are stored. At the decoder, upsampling and convolutions are performed; there is a softmax
classifier for each pixel. During upsampling, the max pooling indices at the corresponding encoder
layer are recalled to upsample as shown above. Finally, a softmax classifier is used to predict the
class for each pixel.

4.3 Differences between the two models

The loss used is the binary cross entropy:

loss(y,9) = —(ylog(9) + (1 — y)log(1 — 9))

U-Net was created for biomedical image segmentation. Instead of using pooling indices, the entire
feature maps are transferred from encoder to decoder, then with concatenation to perform convolution.
This makes the model larger and need more memory but it should capture the details more precisely.

5 Experiments/Results/Discussion

5.1 Hyperpameters and metrics

The chosen batch size is 2. It allows to have not a too big memory space. Also, since the training
sample is small, having a small batch size makes sense. It made the training slower, with approxi-
mately 10 minutes per epoch for the U-Net, but the convergence was faster. There are 2000 steps
per epoch and 5 epochs in total. Random data was indeed generated thanks to data augmentation.
Therefore, the training set has a generated infinite size. Because of the random process of the data
augmentation, there are never two identical training epochs.

Three optimizers were tested: SGD, Adagrad and Adam. Adagrad is an optimizer with parameter-
specific learning rates, which are adapted relative to how frequently a parameter gets updated during
training. The more updates a parameter receives, the smaller the learning rate. With these three
optimizers I tuned the learning rate following a panda approach. The results of this experiments can
be seen in the next section. The primary metric used is the accuracy.

5.2 Results
The best accuracy was reached with a U-Net using Adam optimizer with a learning rate of 10~#. The
main results can be seen in the table 1. Other values of the hyperparameters were also tried but gave

lower scores, so they don’t appear in the table.

Table 1: Accuracy of the U-Net and SegNet depending on the chosen hyperparameters.

Model | Optimizer | Learning Rate | Accuracy

U-Net SGD 1074 0.885
U-Net SGD 1g—= 0.867
U-Net Adagrad 10~ 0.878
U-Net Adam 104 0.967
U-Net Adam 1073 0.958
U-Net Adam 1072 0.910
SegNet | SGD 10-4 0.782
SegNet Adam 10~ 0.810
SegNet Adam 1073 0.814

The U-Net models generally perform better than the SegNet on the current problem. The results vary
a lot with the different optimizers and Adam performs the best. Adagrad and SGD give similar scores.
With the best model, the accuracy is 96.7%.

5.3 Discussion

On the figures 7 to 10, one can see examples of predictions. They correspond to the best U-Net and
SegNet models. It can be seen that U-Net performs better.

Figure 7: Example of Figure 8:Figure 9: Example of Figure 10:
test image. Corresponding pre-test image. Corresponding pre-
diction with U-Net. diction with SegNet.

Data augmentation, with random elastic deformations of the training sample, was essential to teach
the network and reach the final accuracy. Without it the scores were much lower and the predicted
images not coherent. With very few annotated images (initially there were 30 images in the training
dataset), it is possible to reach high scores.

Looking at the image predictions, it can be seen that SegNet tends to miss out the finer details
especially at the boundary between white and black areas. U-Net on the other hand, because of
the skip connections from the lower levels, is able to capture the fine details more precisely. The
boundaries are therefore better represented. There are big differences at the boundaries between the
two frameworks. However, U-Net is not very powerful where one class is present in abundance. Also,
one can observe random noise in the U-Net segmentation.

6 Conclusion/Future Work

The goal of the project was to perform cell segmentation on neuronal microscopic images using
convolutional neural networks. The highest scores were achieved with a U-Net and the best score
is 96.7% accuracy. The fact that U-Net performed better than SegNet is not surprising because it
was created to segment biological images. Data augmentation was used due to the small size of the
training dataset.

A possible future work could be to leverage transfer learning in order to compensate the fact that the
amount of training data is low. Using the knowledge learned while solving a problem and applying
it to the cell segmentation problem could be a good improvement. Other CNN frameworks, such
as Tiramisu or U-SegNet [8], could also be implemented and compared to the U-Net. U-SegNet is
another Fully Convolutional Neural Network (FCN) combining the architectures of the SegNet and
the U-Net. Although the base architecture resembles to a SegNet, it has skip connections inspired
from U-Net.

7 Code

The code is available at https://github.com/abarge/CS230. It contains the U-Net model in model.py,
the SegNet in segnet.py and the data augmentation in generator.py.

References

[1] Ronneberger,O.,Fischer,P.,Brox,T.:U-Net: Convolutional Networks for Biomedical Image Segmentation. In:
MICCAI (2015)

[2] Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, Yang SR, Kurian A, Van Valen D, West
R, Bendall SC, Angelo M: AStructured Tumor-Immune Microenvironment in Triple Negative Breast Cancer
Revealed by Multiplexed Ion Beam Imaging, in Cell, 2018

[3] David A. Van Valen, Takamasa Kudo, Keara M. Lane, Derek N. Macklin, Nicolas T. Quach, Mialy M.
DeFelice, Inbal Maayan, Yu Tanouchi, Euan A. Ashley, Markus W. Covert: Deep Learning Automates the
Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments, 2016

[4] V.Badrinarayanan, A.Kendall, R.Cipolla: SegNet: A Deep Convolutional Encoder-Decoder Architecture for
Image Segmentation, IEEE Conference, 2015

[5] Jégou S., Drozdzal M., Vazquez D., Romero A., Bengio Y., The One Hundred Layers Tiramisu: Fully
Convolutional DenseNets for Semantic Segmentation, IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2017

[6] Ciresan, D.C., Gambardella, L.M., Giusti, A., Schmidhuber, J.: Deep neural net- works segment neuronal
membranes in electron microscopy images, in NIPS, 2012

[7] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation, arXiv, 2014

[8] Pulkit Kumar Pravin Nagar Chetan Arora Anubha Gupta, U-SegNet: Fully convolutional neural network
based automated brain tissue segmentation tool, arXiv, 2018

[9] Libraries used: Tensorflow, Keras, Matplotlib, Numpy, Scikit-image, Scipy

