Quick Draw! Doodle Recognition Deep Learning
Strategy

Rui Ning, Yumeng Yue and Zewen Zhang
Department of Materials Science and Engineering
Stanford University
ruining@stanford.edu, yuey3@stanford.edu, zwzhang@stanford.edu

Abstract

Convolutional Neural Networks(CNN) have been shown to be powerful in com-
puter vision tasks like object detection, recognition. In this project, we have
explored different neural network architectures to implement "Quick Draw!" game.
Three different CNN models are adopted here: 4-layer CNN, MobileNetV2 and
DenseNet169. We present qualitative result analysis of these models and con-
clude that DenseNet169 model with RGB images as samples performs better in
classification of drawings with simple features.

1 Introduction

Google released an experimental human-Al interactive game in 2016 titled Quick, Draw!, in which
players draw a given object under 20 seconds, and while the user is drawing, an underlying algorithm
attempts to guess the category of the object, like “bee”, “backpack”, “ant”, etc. and the predictions
evolve as the user adds more and more detail. [2]

This project is aimed to build a extraordinary classifier for the Quick, Draw!’s dataset. Our goal is to
build a efficient neural network classifier to recognize over 300 categories from SOM doodles with
higher accuracy. In order to achieve high prediction accuracy, smaller size, compatible with mobile
devices, and large dataset processing ability, we need a neural network with a high accuracy as well
as relatively a simple architecture. And beyond the scope of this task, the exploration of efficient
neural network dealing with this task will have an immediate impact on handwriting recognition and
its robust applications in areas including OCR (Optical Character Recognition), ASR (Automatic
Speech Recognition), and NLP (Natural Language Processing).

g M U

Figure 1: Doodle Image

2 Related Work

For image recognition, Seddati et al. improved sketch recognition using CNN with residuals addition
to achieve a mean average accuracy of 79.18% with respect to TU-Berlin sketch benchmark and
93.02 % with respect to the sketchy database, while the human Mean Average Precision was only
73% on the TU-Berlin sketch benchmark.[8]

CS230: Deep Learning, Winter 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

He et al. proposed the idea of residual networks, ResNet, by reformulate the layers as learning
residual functions with reference to the layer inputs, instead of learning unreferenced functions Deep
Residual Learning. They found it easier to train deep convoluted neural networks.[4]

Despite the strong representative power of deep convoluted neural networks, it’s generally getting
harder and harder to train deeper networks.

Huang and Liu et al. brought about DenseNets architecture where the model adopt the idea of
residuals in the network, but connects each layer to every other layer in a feed-forward fashion.
They maintained or even exceeded the representative power with a smaller number of parameters as
compared with ResNets on benchmark tasks like CIFAR-10 and ImageNet. [6]

Howard et al. presented a class of models called MobileNet for mobile or embedded vision applica-
tions. MobileNets are built on a streamlined architecture that use depth-wise separable convolutions
to build light weight deep neural networks. Two simple global hyper-parameters are introduced
for the trade-off between latency and accuracy with high efficiency. They performed extensive
experiments on mobileNet and compared to other models on ImgaeNet classification tasks. Their
result demonstrates the effectiveness of MobileNet in a wide range of applications such as object
detection, object classification, face attributes, etc. [5]

Based on MobileNet framework, Sandler along with colleagues at Google Inc designed a even more
powerful network MobileNetV2 with inverted residual structure where the shortcut connections are
between the thin bottleneck layers to remove non-linearities in the narrow layers in order to maintain
representational power. [7]

3 Dataset and Features

3.1 Dataset Preparation

The dataset contains S0M images in 300+ categories form the Quick, Draw! players doodles. The
drawings were labeled with metadata as what the players were asked to draw and the country they
were located. The dataset has two different versions. One is the raw data directly recorded from the
user inputs. Another dataset is the simplified version which use less point to define a line. In this
project, we ran the neural network models first through the simplified data to modify the parameters,
and then use the raw data to further develop the network model to greater accuracy. And here to
simplify our model, we didn’t take into account the nationality of each doodle’s drawer as a variable
in prediction as it might not contain as much information as drawing itself.

3.2 Data Processing and Sampling

There are 340 classes in this dataset, and for each class, due to the limitation of the memory of our
instance, we varied the samples per class based on how we processed the data in order to fit in the
memory. The general way to clean data is to read the points from the input and draw lines between
points on an empty image and convert the image into a numpy array. The sample will be labeled and
the test set will be split from the input data after preprocessing.

To test our models, we split the data into three different folds: 80% for training, and 20% for testing.
To reduce computation time and storage of the data, we decided to create a smaller subset of the
original dataset by randomly sampling 2% of the drawings from each category. As a result, we
obtain approximately 544,000 examples for the training set and 136,000 examples for he testing set.
Furthermore, the number of drawings in each category is balanced, so this leaves approximately 1600
examples per category in the training set.

Apart from raw image, we preprocessed our images to include more information. Simply drawing a
greyscale picture would only include information of shape. To better utilize the information encoded
in the dataset, we decide to include time stamp of the drawings. Intuitively, people draw a specific
pattern in a fixed sequence, which could help the algorithm to recognize image class. Also, in
order to fit current convolutional neural network models, which always takes three-channel image as
the input, we divide the sequence information into two parts, namely the stroke sequence and the
point sequence in each line. Therefore, we construct the three layers of as-generated pseudo-RGB
images respectively, the first channel contains shape information, the second channel contains stroke
sequence information, and the last channel contains point sequence in each stroke. In Figure3, we

demonstrated the generation of a 3-channel image of a clock from its 1-channel image. The first layer
is the original greyscale image, while the second layer is a stroke sequence.

Vi i 7 7 7 - 7 7 ek
Vs o 7 7 7 0 4 v 50 7
a7
ol 7 - 7 7 - 5 7

= : -

Stroke Sequence Layer

Generated RGB images

a0
Point Sequence Layer

Figure 2: Schematic of data processing

CleIe

Layer 1: Raw Image Layer 2: Stroke Sequence Layer 3: Point Sequence Pseudo-RGB images

Figure 3: Pseudo RGB Picture Generation

We successfully generated pseudo-RGB pictures as shown in Figure 4. The colored image has a
different colors for different strokes, and color variation in each stroke. However, limited by our
computation resource, we adopt a resolution of 64*64*1 for greyscale image, and 32*32*3 for RGB
image to fit in the memory.

/ /

Raw Image Pseudo-RGB images

Figure 4: Comparison of raw image and generated image
4 Methods

As a baseline, we worked with a simple 2-layer CNN model. Intuitively, images here are not complex
pictures taken from real world, therefore we started off with simple shallow CNN models. The 2
layer CNN started to overfit training set with a test set accuracy of around 60%.

In this 4-layer CNN model, for each layer, we applied a 3*3 filter with same padding followed by
a 2*2 max pooling and 0.1 dropout. These 4 layers are followed by 2 fully connected layers. The
RELU activation function is applied in each layer and a soft-max prediction function is used for
multi-class classification. The architecture is as shown in Figure 5.

MAXPOOL MAXPOOL MAXPOOL MAXPOOL
f=3x3 f=3x3 f=3x3 f=3x3

Input ——» — — — 5 £ - —

RelU RelU RelU RelU

32x32x1 16x16 x 32 8x8x64 4x4x128

Figure 5: 4-Layer CNN Architecture
3

After working with as-established 4layer CNN model, we tried out more complex neural network
to test out if deeper neural networks could help with prediction accuracy. We have experimented
with VGG16, VGG19[9] and ResNets[4]. It turned out that if we laod pretrained parameters with
benchmark tasks[1], the model yields random guess results at around 0.003, which indicated that
picture features are quite different from real world image. Also, it’s too hard to train deep CNNss like
ResNet and VGG architectures from scratch.

Therefore, we turned to more well-established and efficient models. We directly adopted the
DenseNet169[6] and MobileNetV2[7] architecture from Keras[3] using max pooling for all of
the pooling layers. The architecture of the two models are shown in Figure 6 and Figure 7. It’s
important to note that we did not load any pre-trained weights from other benchmark datasets like
ImageNet because those were trained with images that are much more complex than our samples.
Therefore, we chose to train our model from scratch. We used mini-batch gradient descend method
with batch size of 128 for all the models.

o 1) 2 0
0 =) (@) o 0 o 0 o
ogm 08m ogm 08m o
= S|=| 3 == S|=| 3 3 = s)
= <|S| @ <|>| @ <|>| @« <|>| @ a
5 Om| ® (,Om@| ® |_,Opa| @ S| ® =
c = @ c @ = @ = @ =
— =& = | = =0 = = | = fme
= o o = o (e o) o o o o
ok| a o| o oK | o O | o =]
S|o| =~ Sio| ~ S|o| &~ Sio| ~
= = = =

Figure 6: DenseNet Architecture

Ad

]

| Conv 1x1, Linear ‘

| Conv 1x1, Linear

Dwise 3x3,stride 2,
RelU 6
Dwise 3x3, ReLU 6

| Conv 1x1, RelLU 6 ‘

Input Layer

Stride = 1 block Stride = 2 block

[

1
Conv 1x1, ReLU 6

Input Layer

|

Figure 7: MobileNetV2 Architecture

S Experiments, Results and Discussion

From Figure 8, we noticed that all models yield an accuracy of higher than 70% despite different
types of image samples, respectively. The model with best performance is DenseNet169 trained on
pseudo-RGB images.

Surprisingly, the shallow 4layer CNN model worked quite well as compared with more advanced
neural networks. While the other two models over-fit quickly only after 5 epochs, MobileNetV2
gradually increase prediction accuracy upon epochs. This probably suggests that we don’t need a
complex model to make good predictions.

From Table 1, we can conclude that the performance of 4layer CNN model depends less on whether
the image is grayscale or RGB compared with DenseNet169 and MobileNetV2 models. With more
information contained in the image, the DenseNet169 model performs better while the performance
of MobileNetV2 is worse. We believe this is due to the complexity of the model. MobileNetV2
is a light-weight model so when predicting images with less features, it performs better. This also
explains that MobileNetV2 did not overfit after 20 epochs while other models overfit quickly. Thus,
adding more information into the image will hurt the performance of MobileNetV2 model. On the
contrary, DenseNet169, which has a similar representative power as ResNets, performed better when
samples are more complicated. Overall, the method of converting samples into pesudo-GRB would
be helpful for more complicated and representative models rather than simple and shallow models.

4layer CNN tra:

DenseNet 169 train_grey scale x MobileNet V2
test_g e A— test_grey scale \
train_RGB train_RGB 01 train_RGB
v— test_RGB v test_RGB \ v— test_RGB

\ \
x) vvvyvYy e a \

vvV
x &> A4
YoexY Y X A4 AAAAAA X

v T
TE AN AN T YV VTV VT VY Y-y
VY-V N-V-v-v-v-v Gk

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Epoch Epoch Epoch

Figure 8: Training and Test Loss

However, it’s reasonable to speculate that we need to include more information from the data set or
figure out a way to more reasonably include time sequence information.

Accuracy 4layer CNN | DenseNet169 | MobileNetV2
Ichannel-greyscale image 71.8% 71.4% 74.1%
3channel-pseudo RGB image 71.4% 75.0% 70.8%

Table 1: Test Accuracy

We believe that there are several possible reasons for the low test set accuracy: 1. Limited training
sample. Here we only use a maximum of 2000 samples of each class to train our model to save time.
2. Large number of classes vs. shallow neural networks. We have over 300 classes, whereas less than
five layers of CNN is tested here; 3. Lack of hyperparameter tuning. We didn’t carefully tune the
hyperparameters, like node numbers of each layer, activation functions, dropout values, etc.; 4. Noisy
data. When picking samples from the dataset, we did not filter out some noisy samples which are
labeled as “not recognized”.

6 Conclusion and Future Work

In conclusion, we have experimented with three different kinds of neural network models, 4layer
CNN, MobileNet V2, and DenseNet169, on grayscale and RGB images. In a prediction out of 340
classes, all three models yield over 70% prediction accuracy. The results are fairly good considered
that the number of class is very large, yet there are still problems remained and space to improve.

To further improve our model, the most straight-forward way is to train models on an AWS instance
with larger RAM, so more samples per-class with higher resolution can be included. We only used
around 2% of the total dataset for training, leaving the rest of the dataset open for further development.
Also, the dataset we used is the simplified version that some of the information were discarded from
the raw version dataset.

We’ll also look into test set prediction results and try to have in-depth understanding of the wrong
predictions from our models, and make modifications accordingly. To improve our model accuracy,
we might work on "1 vs 1" vote strategy or ensemble to increase our prediction accuracy. Lastly, we
will try to strike a balance between prediction accuracy and the size of our model, since ultimately
we would like to build an efficient classifier that would work on mobile devices with high accuracy.

7 Contribution

We processed image data, implemented the training process and evaluated models. All authors
contributed equally on these works. The authors thank Ahmadreza Momeni for his constructive
suggestions, careful guidance and dedicated mentorship.

8 Code Link

https://github.com/zwzhang2018/cs230-final-project

References
[1] Imagenet. http://www.image-net.org/. Accessed Feb 01, 2019.

[2] Quick draw. https://www.kaggle.com/c/quickdraw-doodle-recognition. Accessed
Feb 01, 2019.

[3] Frangois Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[5] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[6] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700-4708, 2017.

[7] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4510-4520, 2018.

[8] Omar Seddati, Stéphane Dupont, and Said Mahmoudi. Deepsketch 3. Multimedia Tools Appl.,
76(21):22333-22359, November 2017.

[9] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

