Tour Guide
Deep Learning for Trajectory Optimization

James Guthrie
jguthr@stanford.edu

Abstract

Real-time trajectory generation for autonomous vehicles requires solving nonlinear
optimization problems that are parameterized by the current system state and
objectives. Solver convergence is greatly affected by how close the problem is
initialized to the true answer. We train a neural network on a library of optimal
trajectories representing a reuseable launch vehicle that must reach a specified final
position. The neural network is then used to initialize ("warm-start") the nonlinear
optimizer on new, unsolved instances of the problem. We achieve a 2.2x speedup
in solver runtime on average compared to using a default initialization.

1 Introduction

Autonomous systems such as self-driving cars and unmanned aerial vehicles perform motion planning
in real-time. These plans must respect the governing dynamics of the system to be realizable. Further,
to ensure acceptable performance, they should be optimal with respect to relevant criteria (e.g. fuel
expenditure, final arrival time). This process is typically referred to as trajectory optimization. Due to
the nonlinear dynamics of most autonomous systems, trajectory optimization often involves solving
a nonlinear optimization problem. Unlike convex optimization, generic nonlinear optimization
problems typically 1) converge to a local (vice global) minimum and 2) only have guaranteed
convergence properties when the initial solution guess is sufficiently close to the final answer. Thus
good initializations are essential to achieve fast and reliable convergence in most real-time trajectory
optimization problems.

In this project we train a neural network to generate a good initial guess for a trajectory optimization
problem that is parameterized by the current state (initial position) of the system and its desired final
state. We generate a dataset of sample solutions offline using the optimal control software GPOPS-II
[5] and then train a neural network to replicate these "seed" trajectories. Ideally the network will
generalize well and provide good initial guesses for previously unsolved problems. This initial guess
can then be quickly refined to the true answer by solving the nonlinear optimization problem online.

An alternative approach would be to attempt pure imitation learning in which the neural network
exactly replicates the output of the nonlinear optimization solver. In theory, the online motion
planning could then simply evaluate the neural network with the current system parameters. While
desirable, this creates validation and verification issues in ensuring that the neural network always
respects the various constraints imposed on the trajectory. Thus our focus will be on the less ambitious
goal of simply being able to “warm-start” a nonlinear optimization problem via a trained neural
network.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

Trajectory optimization via nonlinear optimization is fundamentally limited by solver times. Recent
research has explored leveraging neural networks as a means of accelerating solver runtimes. In [1] a
neural network is used to approximate the cost-to-go function of a model predictive controller. This
allows the trajectory optimization problem to optimize over a shorter time horizon yielding faster
runtimes without sacrificing performance. Although theoretically appealing, the authors are not able
to extend the approach beyond basic toy problems as the accuracy required in the value function
approximation is “practically impossible.”

More recently, [2] utilized a stored library of pre-computed trajectories to provide the initial guess
to a nonlinear optimization solver. For a given problem instance the best initial guess from the
trajectory library was selected using k-nearest neighbors. As expected, the resulting optimization
problem showed improved convergence compared to a naive initial guess. This came at the cost of 1)
a potentially expensive search process for the best initial guess amongst the candidates within the
trajectory library and 2) a large memory footprint which is not practical for many aerospace systems.

In [3], the authors first generate a family of relevant trajectories for an unmanned aerial vehicle which
are dependent on the current state of the system. A neural network is then trained to approximate
the trajectories. Finally, the neural network is used to warm-start a nonlinear optimization problem
for real-time trajectory generation. The authors achieve quick convergence (2 to 5 iterations) for
the system which consists of six states controlled over a short horizon (5s). This work will extend
the approach of [3] to the more complex problem of a reusable launch vehicle landing problem
taken from [4]. The problem has more challenging dynamics and involves much longer trajectories
(approximately 150 seconds).

3 Dataset and Features

The dataset consists of 14,000 trajectories for a reusable space launch vehicle that is returning to
earth. The vehicle is controlled by the angle-of-attack (aoa) and sideslip angle (bet) which are used
to guide it to a terminal latitude and longitude at which point another guidance algorithm takes over.
The vehicle must arrive at this terminal position with an altitude of 24kft, flight path angle (fpa)
of —5° and azimuth angle of 0°. Due to uncertainty in the mission profile, the initial altitude (alt;)
and terminal latitude (lat ¢) and longitude (lony) can vary as given in Table 1. Figure 1 shows two
samples trajectories.

Table 1: Initial and Terminal Conditions

Altitude Longitude Latitude Velocity Flight Path Angle Azimuth
Initial 60-80kft 0 0 80m/s =1° 90°
Terminal 24Kkft 70° —80° 25° —35h° Free —5° 0°

The commercial optimal control software GPOPS-II [5] is used to determine the appropriate con-
trols for arriving at the given terminal position in minimum time for 14,000 possible scenarios
(alt;, laty,long). Due to memory limitations it is not feasible to store all possible trajectories on
the flight computer and load the appropriate control sequence in real-time. Instead, the optimal
control problem will be solved online for the system conditions using the nonlinear solver IPOPT
[8]. This solver requires an initial guess of the solution which consists of both the system con-
trols and states. The closeness of the guess to the true answer impacts the solver runtime. We
aim to accelerate this by training a neural network to generate a good initial guess for a given
(alt;,laty,lony). Each control and state variable is represented by 100 equally-spaced points in time
(i.e. aoa, bet, alt,lon, lat, vel, fpa,azi € R'"?). Additionally we provide the flight duration ¢; € R
which determines the time duration each point represents. The inputis z = [alt; laty long] € R3.

The outputis y = [aoa bet alt lon lat wvel fpa azi tg] € R Our problem is one
of multivariate regression in which we want to minimize the average mean squared error:

J(y,9) = liZZ(yj —) 0))
i=1 j=1

Here m = 14,000, n, = 801,y € R® is truth, and § € R¥" is the output of the neural network
which is given by f(z). Using scikit learn [10], we shift (remove mean) and scale to unit variance
each element of the input = and output y. The scaling of the input x is done to aid the convergence
of the optimization methods. The scaling of the output y is done to ensure that our loss function
weights each output equally. Without this scaling, the training would heavily focus on the velocity
and altitude signals as these have larger mean relative to the other degree-based signals (which are
numerically represented in radians). Scaling the output has the added benefit of making the loss
function value easily understood. J(y, §) = 0.01 means on average we have 1% error (in the 2-norm
sense) in our representation of y with all elements weighted equally.

Angle-of-Attack Sideslip Altitude
8 -4 80
6 ® 60
-6 -
o 4 o :
" 7 40
-8
0 -9 20
0 50 100 150 0 50 100 150 0 50 100 150
Longitude Latitude Velocity
80 30 80
60
20 60
o 40 o g
10 40
20
0 0 20
0 50 100 150 0 50 100 150 0 50 100 150
Flight Path Angle Azimuth
5 100
Initial Altitude 72.0kft,
Terminal Longitude 74.6 deg.,
5 0 & Terminal Latitude 29.2deg.
50 Initial Altitude 76.6Kit,
Terminal Longitude 76.8 deg.,
-5 Terminal Latitude 26.4deg.
0
0 50 100 150 0 50 100 150
Time (s)
Figure 1: Example Trajectories
4 Methods

TensorFlow [7] in combination with Keras[6] was used to implement a fully-connected neural
network with n; hidden layers and ny, rectifier-linear units (ReLU) per hidden layer. The input was
(alt;,laty,long). The output layer consisted of 801 linear weightings to generate §. The 14,000
trajectories were split 90/10 into training and test set respectively. The ADAM [9] optimizer was
utilized throughout.

5 Experiments/Results/Discussion

With the data properly scaled, it was straight-forward to find an appropriate learning rate o for the
ADAM optimizer. We used o = 0.01, which showed good convergence as seen in Figure 2. The

——a = 0.0001 Il Training Set
——a =0.001 I Test Set
a=0.01 5 - - -MSE Requirement
—a=01 &
K
=
E
I3
w0
E
S
=
SR S N S SR Sy S S s I | Sninl | S II """ B------ i~ |
0 10 20 30 40 50 60 70 80 90 100 8 12 16
Epoch Number of Hidden Units
Figure 2: Impact of a on convergence Figure 3: Impact of hidden units on MSE

remaining ADAM parameters were standard (81 = 0.9, 82 = 0.999, ¢ = le — 8). A relatively small
mini-batch size of 32 was used to ensure the model generalized well.

As the resulting neural network is intended to be deployed on a flight computer with limited computa-
tional resources, a strong emphasis was placed on minimizing the size of the network. Numerical
experiments with the solver IPOPT [8] suggested that improving the initial guess gave diminishing
returns once it was within 1% (as calculated by (1) of the true solution. Thus our hyperparameter
tuning was done to find the smallest network that would achieve a 1% average mean squared error on
the test and training sets. Instead of starting with a large network and enforcing sparsity through L; or
L5 penalty terms, we instead iterated on the number of hidden units until we achieved a satisfactory
loss.

Figure 3 shows the reduction in cost function J(y, §) as we increase the number of hidden units (ny,)
in a fully-connected neural network with one hidden layer (n; = 1). With the chosen batch size,
we did not experience any over-fitting issues. With n; = 1,n; = 16 we achieve our 1% average
mean squared error requirement. With this model, the cost function was 0.0077 and 0.0070 on the
training and test set respectively (i.e. below the 1% requirement). Figure 4 shows an example of
a reconstructed angle-of-attack profile with different numbers of hidden units. With nj, = 16 the
resulting profile is nearly indistinguishable from truth.

Table 2 further summarizes the performance of our neural network on the test and training sets. While
the average mean squared error satisfies the 1% requirement, it is not met on every individual test and
and training example. Specifically, a small number of profiles that featured significant "clipping" of
the angle-of-attack (it is limited to 8°) had poorer performance. Figure 5 shows an example of one
such profile. From time 130s — 170s the angle-of-attack is saturated. By increasing the number of
hidden layers, we were able to improve the performance on these outlier cases as seen in Figure 5
where n; = 3 closely matches truth. However, the resulting increase in neural network complexity
was undesirable and computational testing (discussed later) confirmed the baseline performance was
sufficient.

Table 2: Performance on test and training sets (n;, = 16,n; = 1)

Min. Loss Max. Loss Mean Loss
Train 0.0007 0.018 0.0077
Test 0.0007 0.016 0.0071

As previously discussed, the neural network developed herein is intended to provide a good "warm-
start" to the optimization solver IPOPT. To demonstrate its utility, we solved 1000 instances of
the re-entry problem with parameters (alt;,laty,lony) drawn from ranges given in Table 1. We
first solved the problems with IPOPT and a default initialization ("cold-start"). We then solved
the same problems using warm-starts generated by the neural network. Table 3 lists the timing
results. Although the solver obtains the same final solution in both instances, the warm-started solver

Angle-of-Attack Angle-of-Attack

8 T T 9 T T
—_—np =2 —_—ny =1
7bH——np =38 8rl—mn; =2 /\.—.z ’ \ a
np = 16 / L n; = 3 Jy\ |
6|= = =Truth 'p‘.{l "[l- - - Truth / Y
ol
& &5
[[
A 4Ra A
i ,l 4r
Al Z
sl
2 2 4/
! 0 2‘0 4‘0 éO 8‘0 1(;0 12’0 14“‘0 1 (;0 ! 0 2‘0 4‘0 6‘0 8‘0 1 60 9 éO 14“‘0 1 (;O 18‘0 200
Time (s) Time (s)
Figure 4: Approximation of angle-of-attack Figure 5: Saturating angle-of-attack profile

converges 1 second faster on average (a speedup factor of 2.2x). In one instance the warm-start
reduces the solve time by 6.96s. For real-time trajectory planning these differences in timing can
decide whether a given approach is feasible or not.

Table 3: Solve Times

Minimum (s) Maximum (s) Mean (s)
Cold-Start 0.64 8.08 1.76
Warm-Start (w/Neural Network) 0.25 1.31 0.77
A = Cold Start - Warm Start 0.09 6.96 1.00

6 Conclusion/Future Work

Minimizing solver runtime is essential to successfully deploying optimization-based guidance and
control algorithms on future autonomous vehicles. This project demonstrated that relatively simple
neural networks can be used to help accelerate the nonlinear optimization solvers by providing good
initial solutions guesses. Using a warm-start provided from a neural network, we were able to speed
up the solver runtime by 2.2x on average. It was unexpected that such a simple neural network (one
hidden layer with 16 ReLUs) could so closely replicate a database of trajectories. Unfortunately, time
limitations prevented us from creating a new, more difficult set of trajectories. As future work we
plan to increase the dimensionality of the trajectory data incrementally and pursue more complex
neural network architectures as necessary.

7 Contributions

All work (data generation, data pre-processing, neural network development) was done by the author.
Code for this project is available at: https://github.com/guthriejd1/cs230_project

References

[1] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov, “Value Function Approximation and Model
Predictive Control,” 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning
pp.100-107

[2] W. Merkt, W. Ivan, V. Vijayakumar, “Leveraging Precomputation with Problem Encoding for Warm-Starting
Trajectory Optimization in Complex Environments,” 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems. pp. 5877-5884

[3]1 N. Mansard, A. DelPrete, M. Geisert, S. Tonneau and O. Stasse, "Using a Memory of Motion to Efficiently
‘Warm-Start a Nonlinear Predictive Controller," 2018 IEEE International Conference on Robotics and Automation

(ICRA), Brisbane, QLD, 2018, pp. 2986-2993.

[4] J. Betts Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.SIAM Press,
Philadelphia, PA. 2010

[5] M. Patterson, A. Rao "GPOPS-II A MATLAB Software for Solving Multiple-Phase Optimal Control
Problems using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming,"
ACM Transactions on Mathematical Software, Vol. 41, No. 1, October 2014.

[6] F. Chollet et. al, "Keras", 2015. https://keras.io

[7] M. Abadi et. al, "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems," 2015.
https://www.tensorflow.org

[8] A. Wachter, L. Biegler, "On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm
for Large-Scale Nonlinear Programming," Mathematical Programming 106(1), pp. 25-27, 2006

[9] D. Kingma, "Adam: A Method for Stochastic Optimization," Proceedings of the 3rd International Conference
on Learning Representations, 2014.

[10] F. Pedregosa et. al, "Scikit-learn: Machine Learning in Python", Journal of Machine Learning Research,
2011

