) CS230

Listen, Speak in Hindi!
Text-To-Speech Synthesis in Hindi

Dinesh Chaudhary*
chdinesh@stanford.edu

Abstract
We observe lack of Deep Learning models for Indic Languages and implement a parametric Text-To-Speech

Synthesis model for Hindi. The model is fully-convolutional with attention mechanism and positional
encodings and without any recurrent nodes, leading to faster training time. The model takes Hindi text
sentences as input and generates Spectrogram and audio files as an output. We observe that it is possible to
build a TTS model with reasonable accuracy and naturalness, on a small training dataset without any feature
engineering and within a training time of less than 72 hours. We experiment with architecture given in
Tachibana et. al [20] and DeepVoice3 [13]. Code for this project and synthesized examples are available at:
https://github.com/chdin/hi-tts

1. Introduction

India is home to over 121 languages and 270 mother tongues [7]. With population consisting of over 272 million
illiterates [7] and 62 million visually impaired, TTS systems for Indic languages should get more attention. For
instance, even with new tech invading life of every Indian, it is surprising that the default language for most web
applications is English, a language with just 129 million speakers in India [23]. As an example, taxi apps such as Ola
and Uber give directions only in English, while most of the taxi-drivers speak Indic languages.

Most Indic languages scripts are phonetic in nature (one to one correspondence between what is written and what is
spoken) and share common phonetic base. Hindi is the most spoken Indic language and fourth most spoken
language in the world. 528 million people in India speak Hindi and its dialects as their mother tongue [7]. Our
objective is to build a deep learning TTS model for Hindi.

2. Related Work

TTS models have shifted from concatenative to parametric with less reliance of hand-engineered modules. In 2016,
Google Wavenet [11] used a fully-convolutional auto-regressive model with convolutional layers having various
dilation factors. Tacotron [22] and Tacotron2 [18] use recurrent sequence-to-sequence models for more end-to-end
model. DeepVoice [1] retained the modules of traditional TTS pipeline but trained these modules using neural
network. DeepVoice3 [13] and DC-TTS (Deep Convolutional TTS) Model of Tachibana et. al. [20] though are
fully-convolutional with attention mechanism.

For Hindi TTS, Indic TTS consortium has released TTS system for 13 Indian languages based on Hidden Markov
Model [3]. Convolutional attention based model for multi-lingual multi-speaker synthesis covering four Indic
languages and English is discussed in Baljekar, P. et. al. [5].

3. Data Summary

We have used Indic TTS data collected by TTS Consortium funded by Department of Electronics and Information
Technology, Government of India [8]. We used Hindi dataset consisting of 5.2 hours of audio from a single female
speaker. Dataset was split randomly into 80:15:5 training, validation and test datasets respectively. Summary
statistics and a sample data point alongwith its audio’s Spectrogram and Mel-Spectrogram are provided below:

*SUID 06349844, chdinesh@stanford.edu, CS-230, Deep Learning, Winter 2019, Stanford University, C.A.



Table 1: Data Summary Statistics

Data Min Len  Mean Len Max Len Total
Text (in characters) 16 97 377 2318 files
Text (in words) 3 20 77 2318 files
Audio (in seconds) 1.5 8.1 29.5 5.2 Hours

I W I IR PG B T SR ©

Brdigees - K

Linear-frg

quency Spectrogram

Audio Len (seconds)
o

! i 4 5 b 0 % 100 150 200 250 00 350
Time Text Len (characters)

Figure 1: A sample from dataset alongwith Spectrogram and Mel-Spectrogram; Frequency distribution of length of input files

4. Model Architecture
Text Encoder Audio Encoder

Input: Character Embeddings Input Mel Spec (S):t=1, .. T
N LS5 WEIY : | ’ ¢ — ' Full Spectrogram (Z)

Causal ConviD HW E— |

Spectrogram Super Resolution (SSRN)

P\\\lllﬂ]l.]le Q”Cl\;‘()) Estimated Mel Spec (Y) ~ NeW

Encoding ] t=2 T+1 “:.m

AAALA AA; i { Kev (K) Causal Convid HW ]

137 : 159 ¥ 1t S Guided i g

ISEREEEE SRR TR R TR R T E RS @ Attention =

Positional Block (A) z

Non-Causal Dilated ConvI1D + Highway (HW) Activations Encoding é é A <
Value (V) R (A*V) Rt (R+Q)

Figure 2: Model Architecture [20]. To simplify, we have shown convolutional details only for Text Encoder and highway
activations only for Audio Encoder, even though these are part of all modules. Model consists of two main modules viz.
Text2Mel that generates mel spectrogram Y from text and SSRN that generates full spectrogram Z from mel-spectrogram Y.

(K,V) = TextEnc(L). A = softmax, wis(K'Q/Vd)  Dya(Y|S) := Eye[~Syelog Ve — (1 — Sye) log(1 — Yzu)]
Q = AudioEnc(Sy.p1.7). R=Aw(Q,K,V):=VA = By [=Sp Yo + log(1 + exp ¥7,)],



4.1.Character Embeddings and Audio Files

We use a list of 71 characters consisting of 33 consonants, 14 vowels appearing in their independent and dependent
form (Hindi vowels have different characters when attached with a consonant), punctuation, padding and end-of-
sentence characters. In our experiments, we have used pre-trained as well as learned character embeddings. For
pretrained embedding, we have used 300D Hindi character embeddings from FastText [16]. Hindi Script viz.
Devanagari has no concept of letter case and the data did not consist of numeric figures. Therefore no other pre-
processing was done on text files. Audio files were converted into spectrogram for training the SSRN module and
mel-spectrogram for training the Text2Mel module. Audio files did not have any background noise or long silences.

4.2.Synthesis

As compared to RNNs, we use CNN based architecture for efficient training [13, 20], with following modules:

e Text2Mel consists of four sub-modules viz.:
o Text Encoder: a non-causal module that converts character embeddings into encoded learned
representation
o Audio Encoder: a causal module that encodes mel-spectrogram of already spoken speech
o Attention module: a guided attention module to align encoded audio with encoded text and
o Audio Decoder: a causal module to generate mel spectrogram
e  Spectrogram Super Resolution Network (SSRN): module to generate spectrogram from mel-spectrogram

Model uses stacked dilated convolutional layers to understand long-term context information in text sentences.
Highway activations are used to avoid the problem of vanishing gradients. Use of non-causal convolutions in Text
Encoder means that text synthesis can happen only after receiving the full text sentence as an input from the user.

To learn the network parameters, Text2Mel loss is computed as the sum of L1 loss and binary cross-entropy loss
between predicted and ground-truth mel-spectrogram and error is backpropgated. SSRN loss is similarly computed
as the sum of L1 and cross-entropy loss between ground truth and synthesized spectrogram. Attention matrix is
forced to be nearly diagonal as we may expect text and audio to progress in proper sequence over time (unlike
machine translation tasks). Attention loss is simultaneously optimized with Text2Mel loss with equal weight.

Table 2: Model Hyperparameters

HP for inputs Value HP for Architecture Value HP for training, Value
optimization
Character Embedding (e) 128 or 300 | Kernel Size 3 Batch size 16
Sampling rate of audio 22050 Hz | Encoder, Decoder 256 Adam (B1, B2) 0.5,0.9
channels, Converter
channels
STFT window length, shift 1024, 256 Query position rate 1, Adam (a, €) 0.00(25,
10°
Spectrogram, Mel size 513x4T, Key position rate 1.385 LR schedule Noam
80xT
Pre-emphasis factor 0.97 Position encoding Sinusoidal = Dropout 0.1/0.4

5. Results and Model Variations

We experimented with multiple architecture and hyperparameter choices and compared each variation after 80k
iterations. To select the final model, we could not evaluate using a formal test such as Mean Opinion Score (MOS).
Based on subjective analysis of performance on random samples from validation dataset, we selected a final model



(M2) and trained it further to 160k iterations. To formally evaluate the performance of the final model on validation
and test datasets, we used the following custom metric:

(1 — Synthesized Audio WER)
(1 - Groundtruth Audio WER)

Normalized Word Recognition Rate (WRR) =

We used Google Cloud Speech-To-Text API to convert synthesized audio to text (‘synthesized text”). Synthesized
text was then compared with original text to compute Model’s Word Error Rate (WER). WRR for synthesized text
was normalized by WRR for ground-truth audio files to account for maximum expected recognition rate of Speech
Recognition System on that specific dataset. To summarise, we used a Speech Recognition System instead of
Mechanical Turks and adjusted for the accuracy of Speech Recognition System. The metric maybe considered as
conservative as an STT system would be trained on natural voices and therefore would penalise synthesized dataset
more. Final model’s performance on validation and test dataset is as follows:

Table 3: Final Model Performance on validation and test dataset

Metric Validation Test
Normalized WRR 73.1% 77.5%

We observe that final model’s Normalized WRR 1is the lowest for shorter sentences and improves with sentence
length. For shorter sentences, we observed relatively poor pronunciation as well as errors in attention alignment.

Table 4: Final Model Performance by length of input sentences (in Words)

Sentence length (in words) % of cases in Val Set Normalized WRR
<=12 21% 60%
13-17 25% 72%
18-21 17% 70%
22-27 18% 74%
28-33 9% 79%
>34 9% 77%

5.1.Model Variations

For our baseline model, we implemented DC-TTS with guided attention (with learned embeddings) as given in
Tachibana et. al. and DeepVoice3 (with pretrained and learned embeddings) with monotonic attention. The three
baseline models produced good quality sound on training dataset but failed to synthesize satisfactorily on validation
data. For subsequent experiments, we focussed on DC-TTS model only. As the baseline models were overfitting on
training data and were not converging on the val data, we experimented with three other models. Iterations were

limited to 80k for faster experimentation.

e MIl: Increase dropout from 5% in baseline DC-TTS model to 40%: Character-wise pronunciation on
validation dataset improved as compared to baseline models, but attention alignments failed to converge.
e M2: M1 + sinusoidal position encoding as in DeepVoice3 + learned character embeddings

e M3: M1 + sinusoidal position encoding + pre-trained character embeddings

Based on subjective analysis as mentioned earlier, we selected M2 as the final model and trained it for 160k
iterations to arrive at the final model. The final model learns alignment after 30-50k iterations for most of validation
samples. As training loss is still reducing with each epoch, model performance may improve further by training the

model for more iteration.



i ¢ . ! "
3 : | T
o § o Y J
i : - T !
A 1 A
. . - (" L A

Figure 4: Learned alignments for a validation sample at 10k, 30k and 160 iterations. Training loss per epoch for final model (M2)

6. Observations

In our experiments, we have used pretrained (M3) as well as learned character embeddings (M1 and M2). As Hindi
is a phonetic language, we may expect to see convergence between character embeddings pretrained on text-only
corpus and character embeddings learned from a TTS system. Pretrained embeddings for most of the vowels (blue
circle and oval), guttural ‘back-of-the-mouth’ consonants (orange triangle) and retroflex ‘tongue-curled’ consonants
(gray oval) are in close neighbourhood. Pretrained embedding also provide some other interesting insights. For
instance, embedding vector for compound character (characters that combine consonant with a vowel) with sound
‘ka’ minus embedding for vowel with sound ‘aa’ plus embedding of vowel with sound ‘ee’ has embedding vector
for compound character ‘ki’ as its closest neighbour, which is how these characters are used in practice.

Learned embedding also fall in close neighbourhood for characters that have similar sounds or that originate from a
certain region. However, except for retroflex consonants degree of convergence with pretrained embeddings is low.
This may be due to smaller dataset for TTS. For three vowels, we observe that embeddings for their dependant and
independent form converge in close neighbourhood.

Figure 5: Pretrained Embeddings from FastText vs. Learned Embeddings from our final TTS Model (T-SNE)

7. Summary and Further Work

We build a Hindi TTS system using fully convolutional architecture with learned character embeddings, positional
encoding and a guided attention mechanism. The model can be trained in less than 72 hours on a single 8GB GPU
machine and works reasonably well on medium and long sentences. The audio quality can be improved further by
tuning other hyperparameters that we did not tune. A mixed character and phoeneme model as in DeepVoice3 may
also improve model performance. Training two separate models for short and longer sentences may also help
attention errors to reduce. We would further like to extend the model to multi-speaker and multi-lingual synthesis.
From real-life implementation perspective, we would like to build a new TTS model on code-mixed data consisting
of Hindi transliterated into English and normal English sentences.



Contributions

The project team consisted of one member.

References

— b — e — —
— O O 03N L A
e ) e e e e e

—r—

Arik, S. et. al. (2017) DeepVoice: Real-time neural Text-to-Speech

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin (2017) Attention is all you need

Atish, S. et. al. (2017) TBT (Toolkit to Build TTS): A High Performance Framework to build Multiple
Language HTS Voice

Baby, A., Thomas, A. L., L, N. N., and Consortium, T. (2016) Resources for Indian languages.

Balijekar, P. Speech Synthesis from Found Data

Bojar, O. et. al. (2014) HindEnCorp — Hindi-English and Hindi-only Corpus for Machine Translation

Census of India (2011) Office of the Registrar General, India. http://censusindia.gov.in/2011Census

Indic TTS. https://www.iitm.ac.in/donlab/tts/

Librosa. https://librosa.github.io/librosa/

Mahajan, A. Attention, [ am trying to Speak

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior and Koray Kavukcuoglu (2016). WaveNet: A generative model for raw audio
Pallavi, B. (2014) Speech Synthesis from Found Data

Ping, W., Peng, K., Gibiansky, A., Arik, S. O., Kannan, A., Narang, S., Raiman, J., and Miller, J. (2018) Deep
Voice 3: 2000-speaker neural text-to-speech.

Park, K. Tensorflow Implementation of Deep Voice 3 https://github.com/Kyubyong/deepvoice3

Pytorch. https://pytorch.org/

PytorchNLP. https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.word to_ vector.html

Skerry-Ryan, R., Battenberg, E., Xiao, Y., Wang, Y., Stanton, D., Shor, J., Weiss, R. J., Clark, R., and Saurous,
R. A. (2018) Towards end-to-end prosody transfer for expressive speech synthesis with Tacotron

Shen, J. et. al (2018) Natural TTS synthesis by conditioning wavenet on Mel Spectrogram predictions
Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015) Highway networks. ICML 2015

Tachibana, H., Uenoyama, K., and Aihara, S. (2018) Efficiently trainable text-to-speech system based on deep
convolutional networks with guided attention

TSNE. https://scikit-learn.org/stable/modules/generated/sklearn.manifold. TSNE.html

Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z., Bengio,
S., et al. (2017) Tacotron: A fully end-to-end text-to-speech synthesis model

Wikipedia. https://en.wikipedia.org/wiki/Hindi, https://en.wikipedia.org/wiki/Devanagari,
https://en.wikipedia.org/wiki/Languages of India

Yamamoto, R. DeepVoice3 PyTorch and DC TTS Implementation. https://

github.com/r9y9/deepvoice3 pytorch

Yann Dauphin, Angela Fan, Michael Auli, and David Grangier. (2016) Language modeling with gated
convolutional networks.



