AI Agent for NES Super Mario Brothers

Denis Barkar
Stanford University
dbarkar@stanford.edu

Abstract

In this work, I used the deep learning model known as
DDON to learn control policies for a NES game Super
Mario Brothers. The input given to the model are raw pixels
of the game screen and the output is a value function esti-
mating future rewards. The model is a convolutional neural
network that is trained through only raw frames of the game
and basic info such as score and motion without no adjust-
ments to a specific NES game.

1. Introduction

The main objective of this work is to fully adapt the orig-
inal DQN’s Atari 2600 code to work with any NES game.
With this algorithm in hand, I aim at showing that the algo-
rithms can be trained for different games.

The presented approach uses raw pixel data only, screen
frames are downscaled and converted to grayscale.

The success of this model depends heavily on the quality
of the feature representation. Representing the all possible
permutations of Mario’s world, creates an exceedingly large
state-action space.

Another noteworthy challenge in reinforcement learn-
ing stems from the fact that rewards are sparse and time-
delayed. When the agent earns a reward, we must determine
which of the preceding actions played a role in getting that
reward, and to what extent. Despite these challenges, a con-
volutional neural network, trained with a Double Q-learning
algorithm and updated with stochastic gradient descent can
work reasonably well compared to a new human player.

In this project, I used the OpenAl Gym Retro toolkit
which integrates NES emulator into learning environment
and allows us to focus on writing the reinforcement learn-
ing algorithms together with TensorFlow library [1].

2. Related work

Progress in Atrtificial Intelligence (AI) has been contin-
uously increasing over the last years. Among the trends
followed in the field, artificial neural networks are currently

a top trend, mainly because of advancements in large data
handling, computing power and the arrival of techniques
such as backpropagation and deep learning neural networks.

Reinforcement Learning (RL) tries to emulate human be-
havior and the fact that humans can learn from a completely
clean slate, that is, acquiring knowledge from experience
and perception without depending on inherited expertise or
memory. Mainly, it programs the machine (also known as
learning agent) to take actions in an environment to maxi-
mize some notion of cumulative reward. The environment
is mainly treated as a Markov decision process (MDP) [7]
and although similar to a dynamic programming approach,
a reinforcement learning approach does not assume knowl-
edge of an exact mathematical model of the MDP and target
large MDPs where exact methods become unfeasible. A di-
rect consequence of this approach is that the training data
set for the learning agent is entirely generated by the train-
ing agent itself and its actions on the environment and hence
does not need a human expert to label it; a virtually infinite
training data set is generated on demand and tagged accord-
ing to the agent’s reward system in order for the agent to
progress further in its learning process, always looking for
a greater reward.

A game (and moreover a computer game) is an excel-
lent candidate for a reinforcement learning approach since
every game has a set of rules, a set of available commands
and a victory condition or some score system, which the
player wants to achieve or maximize. Google’s Deepmind
group used these concepts to create the first deep learning
model (namely Deep Q-Networks, also knows as DQNs)
to successfully learn control policies directly from high-
dimensional sensory input using reinforcement learning.
Their model was trained in a set of Atari 2600 games and
was able to deliver state-of-the-art results without any ad-
justment of the architecture or the learning algorithm [3].

Many improvements were presented in the literature
since DQN has been released, including Double DQN
(DDQN) [6], a DQN algorithm that decouples the action
selection and evaluation in the target computation step to
avoid the overoptimism of DQN, what demonstrated to lead
to more stable results.

Given the state-of-the-art results observed for Atari 2600
games, the primary purpose of this work is to adapt the
DDQN to be used on Nintendo Entertainment System
(NES) games and evaluate its performance. The Atari
games are known for their simplicity and almost complete
absence of information unrelated to the play-ability (that
is, graphics that only appeal to the player eye and whose
lack would not affect the player’s performance), while NES
games have a bigger screen size, broader color palette and
commands and are, in general, far more complex and have
far more “irrelevant” graphics.

3. Methods
3.1. Game Mechanics

We consider tasks in which our agent interacts with an
environment &£, in this case the NES emulator, in a sequence
of actions, observations, and rewards. At each time-step the
agent selects an action a; from the set of legal game ac-
tions, A = {1,...,K}. The action is passed to the emu-
lator, which modifies its own internal state and the game
score. This internal state is not observed by the agent,
which, rather observes a vector of raw pixels that repre-
sents the current on-screen frame. Additionally, the agent
receives a reward r; which is determined by a linear combi-
nation of the change in the total game score, the distance the
agent moved to the right, number of lifes, number of coins
and current Mario state (small, big, with fireball). The pri-
mary objective of the game is to reach the flag post at the
end of the stage without Mario losing all of his lives.

Action space is discrete and narrowed to 6 available ac-
tions (Left, Right, Up, Down, A, B).

3.2. Q-Learning

Because the agent only observes the current frame at any
one time-step, the task can only be partitially observed and
many of the states of £ are pereptually aliased - meaning the
current screen z; is not enough information to understand
the entirety of the agent’s in-game circumstance. There-
fore we consider a sequence of actions and states and learn
strategies from these. We assume that all sequences in £
terminate in a finite number of time steps. Thus we can we
can model Super Mario as a finite Markov decision process
(MDP), in which each sequence is a distinct state. This al-
lows us to use standard RL mthods for MDPs by using the
ocmplete sequence as the state representation at time ¢,, [S].

To solve sequential decision problems, we can estimate
for the function

Q*(s,a) = Eg[r + ymax, Q*(s',a’)|s, d]

using Q-learning. Note here v € [0, 1] is the discount fac-
tor that determines the trade-off between short and long-
term rewards. However, traditional Q-learning requires

that we learn all action values in all states separately,
which is impractical in a game as complex as Super Mario
Bros. Instead we can learn a parametarized value function
Q(s,a;0¢). The standard Q-learning update for the param-
eters after taking action a, in state s; and observing the im-
mediate reward R;, 1 and resulting state sy is then

Orr1 = 0; + a(th — Q(s¢,a1;0:))VoQ(st, ar; 04)

where « is a scalar learning rate and the target th is defined
as

Y& = ri1 + ymax,Q(ses1, a; 6y)

This update resembles stochastic gradient descent and
updates the current value of Q(S;, A¢;6;) toward a target
2l

3.3. Deep Q-Networks

A deep Q-network (DQN) is a multi-layered convolu-
tional neural network that outputs a vector of action val-
ues given state s and network parameters 6. It is a func-
tion from R"™ to R™, where n is the dimension of the state
space and m is the dimension of the action space. Three key
elements of the Deep Q-network algorithm are experience
replay, fixed target Q-network, and limiting the range of re-
wards. Experience replay addresses the previously stated
problem that rewards are often time-delayed. It helps break
correlations in data and learn from all past policies. A bank
of the most recent transitions are stored for some predeter-
mined steps and sampled uniformly at random to update the
network.

We also fix the parameters used in the Q-learning tar-
get. We do this by fixing the parameters 6~ in the target
network, and only updating them every 7 time-steps so that
0, < 0. at designated intervals. Thus our objective func-
tion is

yP N =11+ ymax,Q(si41, a; 6y)

Finally, we clip the rewards at some determined thresh-
old, often at [—1; 1] which prevents the Q-values from be-
coming too large and ensures that the gradients are well con-
ditioned [4].

It should be noted, that, for all of the strengths of Deep
Q-learning, it does not perform as well on games with large
action space.

3.4. Double Deep Q-learning

In both traditional and deep Q-learning algorithm, the
max operator uses the same values to choose and evaluate
an action, which can lead to greater estimation error, and,
as a result, overconfidence [6]. To mitigate this, we follow
an approach proposed by van Hasselt, by assigning experi-
ences randomly to update on of two value functions, which

Figure 1. Preprocessed frame

results in two sets of weights, 6 and #’. Each update, one is
used to determine the greedy policy while the other deter-
mines its value. The target network in the deep Q-network
model provides a a second value function without having
to create another network. We evaluate the greedy policy
with the online network, but then estimate its value with the
target network. Thus our target becomes

YN = Ry 1 + 4Q(Seq1, argmax, Q(Set1, a; 60:), 07).

3.5. Convolutional Neural Network Model

The observation is an RGB image of the screen, which
is an array of shape (240,224,3). The image frame is
cropped, downscaled, converted to grayscale and normal-
ized to an 84 x 84 black and white image. A square input
image was needed to use GPU-based 2D convolution

The convolutional neural network architechture is de-
scribed below

1. Input: Four grayscale frames with resolution of 84 x 84
pixels.

2. Hidden layer: Convolves 8 7 x 7 filters of stride 2 with
the input image and applies a rectifier nonlinearity

3. Hidden layer: Max pooling 3 x 3 of stride 2

4. Hidden layer: Convolves 16 5 x 5 filters of stride 2 and
applies a rectifier nonlinearity

5. Hidden layer: Max pooling 3 x 3 of stride 2

6. Hidden layer: Convolves 32 3 x 3 filters of stride 2 and
applies a rectifier nonlinearity

7. Hidden layer: Fully connected layer that consists of
256 rectifier unit

8. Output: Fully connected linear layer which outputs Q-
values of each valid action (6 actions in total)

80000

70000 -

60000 -

50000 -

40000 -

Mean reward

30000 A

20000

10000 -

0 1000000 2000000 3000000 4000000 5000000
Steps

Figure 2. Mean reward

3.6. Evaluation over the training process

To be able to check the progress of the agent over time
during the training process, an evaluation routine (much like
the test routine) is called frequently to evaluate the progress
of the agent. Upon the routine’s end, a few relevant param-
eters that are related to the agent’s development are stored:

o the loss of the network, which is defined as how much
the network has deviated from the start of the evalua-
tion to its end. This parameter should ideally decrease
over time, since the network adapts over time to better
predict which actions will yield more rewards and the
more the network is trained the better at predicting it is
and the lesser it should deviate from a previous state;

o the mean Q-value, defined as the average maximum
value of Q for all states in the network.This should ide-
ally increase over time, since the network should select
a speci

c action for each instance of a game, in contrast with
a random approach, which is the behavior of an un-
trained network;

e the mean score in the game achieved during the eval-
uation process, which may take multiple gameplays.
This value is a much more practical way to evaluate
the performance.

Now, besides the qualitative result of testing the final
trained network by using it to play the game, the data
above shares meaningful information about the whole train-
ing process.

4. Results

The initial results were not very promising. Although the
network did indeed learn, the learning rate was prolonged

0.8

0.6

0.4

Mean Q-value

0.21

0.01

0 1000000 2000000 3000000 4000000 5000000
Steps

Figure 3. Mean Q-value

and very inferior to that of a human player, even a beginner.

Since the training process takes quite some time to be
done and the fact that the agent indicated that it could learn
further with more training time, some modification to the
network was considered to accelerate the training process.
Considering hyper-parameters, an adaptive learning rate o
which decreased at each epoch k and a discount rate ~y
which increased at each epoch k until the value of 0.99 was
found to achieve better results for Atari games [2].

The initial values for o and v were set, respectively,
at 0.0005 (double the original value of 0.00025) and 0.95
(the original value was fixed at 0.99). An epoch was set at
200.000 learning steps of the algorithm, so the values above
would be updated after these many steps.

After the modification above the network achieved better
learning rates quicker than before. Below we may see the
results in figures 2, and 3.

I also implemented prioritized experience replay, which
could be sampled non-uniformly.

The training was done for a total of 5000000 steps us-
ing NVIDIA RTX 2080 Ti video card. After the training,
learned agent could finish the first level in most cases.

The code can be seen here: https://github.com/
mastermind-/super-mario-bros.

5. Conclusion

In this project, I designed an Al agent using Double Deep
Q-learning in order to play NES Super Mario Bros which
was able to successfully complete first level of the game.

According to a lecture from DeepMind, Deep Q-learning
is an extremely effective technique when playing quick-
moving, complex, short-horizon games with fairly imme-
diate rewards, but does not perform as well in long-horizon
games that involve exploration. Super Mario is a game of

both short and long horizons, where the ultimate goal is
fairly delayed, but there are immediate rewards and haz-
ards in the environment. Part of the difficulty of Mario and
other platformer games is that it requires precise timing and
sequencing of actions in order to perform well.

Although the pure RL approach worked, its results were
not very encouraging, probably due to NES games superior
complexity against Atari 2600 games.

For future work, it is possible to:

e increase the number of the network’s layers
e train the network for much more time
o try Actor-Critic algorithm and its modifications

e try exploration based algorithm.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, [. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[2] V. Francois-Lavet, R. Fonteneau, and D. Ernst. How to dis-
count deep reinforcement learning: Towards new dynamic
strategies. CoRR, abs/1512.02011, 2015.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Playing
atari with deep reinforcement learning. CoRR, abs/1312.5602,
2013.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529-533, Feb. 2015.

[5] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[6] H. van Hasselt, A. Guez, and D. Silver. Deep reinforce-
ment learning with double g-learning. CoRR, abs/1509.06461,
2015.

[71 G. Weiss. Dynamic programming and markov processes.
ronald a. howard. technology press and wiley, new york, 1960.
viii + 136 pp. illus. $5.75. Science, 132(3428):667-667, 1960.

