Predictive BMI with Conditional Adversarial Autoencoder

Alejandro Bravo
abravol6@stanford.edu

Edward Guzman
eguzman3@stanford.edu

John Romano
jromano@stanford.edu

March 2019

Abstract

Generative Adversarial Networks (GAN)
and related architectures such as Condi-
tional Adversarial Autoencoders (CAAE)
have been widely used for predictive tasks
such as facial aging and rejuvenation. In ad-
dition to facial aging, such generative images
are potentially useful for a number of health
applications, such as predictive Body Mass
Index (BMI) image generation. However, we
were not able to find any models that per-
formed this task. We present a model that
uses a CAAE in order to generate facial im-
ages at different BMI levels. We achieved a
mean BMI difference of 6.44 between gener-
ated images and their labels.

1 Introduction

Body Mass Index (BMI) is a ”simple, inexpensive,
and noninvasive surrogate measure of body fat” that
is "an appropriate measure for screening for obesity
and its health risks” [1]. It requires only two pa-
rameters to calculate (height and weight), and since
it measures excess weight rather than excess fat, it
has clinical limitations [1]. There has been machine
learning work done with BMI, specifically the use of
VGG-Face network for regression of facial images to
BMI [2]. This work seems to only be limited to re-
gression, however, and not other tasks such as gen-
eration. As such, given the success of Generative
Adversarial Networks (GAN) and other related ar-
chitectures such as Conditional Adversarial Autoen-
coders (CAAE) in tasks such as facial age predic-
tion [3][4], it is of interest to explore generation of
facial images at different BMI levels. Such a gen-
erator could be useful for medical professionals to
provide more complete information and/or projec-
tions to their patients. The input to our algorithm
are images of human faces across a wide variety of
BMI labels. We then use a CAAE to output a series
of 10 images at different BMI levels for each input
face [5].

2 Related Work

2.1 Face aging and rejuvenation

Face aging and rejuvenation is an exciting applica-
tion of conditional generative adversarial networks
that has grown in popularity with recent advances in
natural image generation. Previously, common face
aging techniques were categorized into 'prototyping’
and 'modeling’ methods. Prototyping methods esti-
mate average faces in different age buckets and take
the differences between these average faces to find ag-
ing patterns, which are then applied to input images
to artificially age or rejuvenate them. Such methods
do not take into account distinct facial details among
individuals and therefore produce unrealistic results
[3][4]. Modeling methods tend to produce more re-
alistic images by modeling the biological and phys-
ical patterns of aging, focusing on muscle changes,
wrinkles, and facial structure. These methods are
substantially more costly to implement, however, as
they require collecting data from many individuals at
various points in their lives. They are also computa-
tionally expensive compared to prototyping methods
[7].

With recent advances in natural image gener-
ation, conditional generative adversarial networks
have been utilized more frequently in place of these
older methods [3][4]. Such implementations have uti-
lized datasets containing cropped images of faces la-
beled with the ages of the subjects in each photo.
With this data, they have made use of ”Identity-
Preserving” models, which generate convincing im-
ages of faces conditioned on age while also preserving
the identity of the individual in the input image. We
were inspired by these techniques to explore the pos-
sibility of generating altered photos of individuals’
faces using variables other than age.

2.2 BMI classification

QOur decision to generate images of individuals at
varying BMI's was partially inspired by Kocabey et
al.’s work in using computer vision techniques to esti-
mate an individual’s BMI using only a photo of their
face [2]. This approach utilized a dataset contain-
ing cropped images of faces labeled by BMI. This
dataset format fit well with the identity-preserving
methods used in face-aging/rejuvenation studies, so

we decided to pursue a novel approach of using a
CAAE to generate altered images of an individual’s
face, preserving the original identity and conditioned
on varying BMIs. A CAAE is similar to a GAN in
that it has a generator and discriminator, but it is
different in that unlike a GAN, it does not start train-
ing from noise but from Z-vectors from the encoder

[5]-

3 Dataset and Features

3.1 UTKFace Dataset

The CAAE we are using is trained on the publicly-
available UTKFace dataset [6]. This is a large-scale
single-face dataset with a large range of ages (up to
116 years old). The dataset consists of over 23,000
images covering providing large variation in poses,
facial expressions, and ambient lighting. Each image
is labeled by age, gender, and ethnicity. More specifi-
cally, we are using a variant of the UTKFace dataset
that contains images that are cropped and center-
aligned around each face. The images in this dataset
variant have an RGB color space and a resolution of
200x200.

3.2 VisualBMI Dataset

The BMI dataset we are using was developed us-
ing data from the now defunct VisualBMI project
and consists of user-submitted images on social me-
dia. More specifically, the dataset was created by
Kocabey et al. as part of their efforts to build a
BMI classifier based on a single face input [2]. Access
to this dataset was obtained by reaching out to the
team via email and requesting access to the dataset
and code described in their paper. This dataset con-
sists of around 4,200 single-face images. The images
are RGB images with some variation in lighting and
image resolutions. Fach image is labeled by BMI
and gender. Some preprocessing was required to crop
and center-align each face image in the dataset. This
was accomplished using the open source Python Au-
tocrop utility [12].

3.3 Data Augmentation

The VisualBMI dataset, while useful, was limited
to only a few thousand images. We used a num-
ber of data augmentation techniques to multiply our
dataset by a factor of 10. For each of the 4206 input
images, we generated the following augmentations
using the albumentations library in Python [13]:
Random Brightness Change

Random Contrast Change

Grayscale

Horizontal Flip

Hue-Saturation-Value Color Shift

Combination of 1 and 4

A

7. Combination of 2 and 4
8. Combination of 3 and 4
9. Combination of 4 and 5
10. Combination of 2 and 5

4 Methods

4.1 Initial Approach

We originally had the idea of using a GAN for facial
generation and then applying BMI regression on the
generated images to explore the accuracy. We began
by adapting a GAN implementation in PyTorch to
the UTKFace dataset to get a first model up and
running [10]. This model worked well on the MNIST
dataset that it was designed for, but when we ap-
plied it to the UTKFace dataset, we received high
discriminator losses and noisy, unintelligible output
for many epochs. It was at this point that we decided
to pivot to using the CAAE directly for variable BMI
facial generation. We used a CAAE this time that
was implemented for the purposes of facial aging and
were able to get it to produce results, shown below
[11].

4.2 Transfer Learning Approach

Our baseline model comes from Github user mat-
tans’ PyTorch implementation of the algorithm in
[11]. This model was written in Python 3.7 and Py-
Torch 0.4.1. This network consists of an encoder,
which transforms RGB images to Z vectors, a gen-
erator which transforms Z vectors to RGB images, a
discriminator that measures and forces uniform dis-
tribution on the encoder’s output, and another dis-
criminator that measures and forces realistic proper-
ties on the generator’s output.

The pre-trained model included with the PyTorch
implementation was trained on the UTKFace dataset
for 200 epochs and uses a latent vector size of 100.
Starting from this pre-trained model, we trained on
our augmented VisualBMI dataset for 200 epochs
allowing all of the model’s parameters to change.
Training was done on GPU-enabled AWS instances.

Originally, the conditional autoencoder grouped
ages into 10 age buckets of approximately 10 years
each. However, when applying transfer learning to
the BMI generation, we needed to group our BMI-
labeled images into buckets for the autoencoder to
train on. We decided to keep the same number of
buckets and decided on BMI buckets in a way that
would spread our dataset evenly between the buck-
ets. A Python script was used to determine which
BMI ranges to use and also to label our dataset based
on these new buckets for use with the conditional
autoencoder. The buckets we used grouped BMIs
into the following ranges: (0-23), (23-25), (25-27),
(27-29), (29-31), (31-33), (33-36), (36-39), (39-44),
(44+).

4.3 Network Architecture

Encoder: 5 convolutional layers and a fully con-
nected layer. Face images of dimension 128x128x3
are converted to latent vectors of configurable size
(default size of 50).

do
“

= | | — ‘;;77 v - =
| e w ’\I = 4 =l

Generator: 7 deconvolutional layers and a fully
connected layer. Labeled Z vectors in a latent
space are transformed into face images of dimensions
128x128x3.

16384

Discriminators: One discriminator on Z with 4
fully-connected layers, and a second on images with
4 convolutional layers and 2 fully connected layers.

5 Experiments / Results / Dis-
cussion

5.1 Hyperparameters

Our model was trained for 200 epochs using the fol-
lowing hyperparameters:

Batch Size: 64

Learning Rate: 2e-4

Weight Decay: le-5

Beta 1: 0.9

Beta 2: 0.999

Latent (Z) Vector Size: 100

S o

5.2 Loss

To calculate the loss on the encoder-decoder, our
model uses a mean absolute error loss function.
Specifically, we are using PyTorch’s implementation
of L1Loss. According to the PyTorch documentation

[14], this loss function can be described as an average
over the following quantity:

ln = |xn - yn‘

For loss functions on the discriminators our
model uses binary cross entropy (BCE). Specifically,
we are using PyTorch’s implementation of BCE-
WithLogitsLoss. According to the PyTorch docu-
mentation [14], this loss function can be described
as an average over the following quantity:

Iy, = —wp [yn - logo(z,) + (1 — y,) - log(l — o(z,))]

The following is a plot of the different losses
used graphed over the last 52 epochs of training.

Losses by epoch

144
— &g
— reg
— dz
— e
—
— dg

valid

Averaged loss
o o o Lo |
» o ® o)
L L L ! N

o
]

=4
o
s

Epochs

5.3 Metrics

Qualitative and quantitative methods were employed
to evaluate the output of our model. From visual
observation, we were able to see that the model pro-
duced favorable results when input images were clear
and aligned with subjects facing the camera. We
also observed that the model outputted better results
when generating images that increase an individual’s
BMI rather than decrease it. This may have resulted
from the fact that our dataset contained significantly
more images of individuals at high BMI’s (30+) than
lower BMI’s (< 20), so our model was able to better
learn features of high-BMI individuals.

To quantitatively evaluate our results, we
adopted a method similar to that used by G. An-
tipov, M. Baccouche, and J.L. Dugelay in their face
aging study [3]. Using the Face-to-BMI classifier, we
computed the mean difference between what BMI an
image was classified to have and what BMI range an
image belongs to. This mean difference was 6.44 for
our generated images, only 2.5 points more than the
mean difference for the original input images.

5.4 Sample Results

Below are 3 example BMI output progressions. The
input is the leftmost image and all other images are
outputted by our model. The single image outlined
in white in each example corresponds to the model’s

generation of the input face at the individual’s actual
BMI.

The following is an example of many input faces
(left) and the images reconstructed (right) from their
latent vector representation.

6 Conclusion / Future Work

Here we show a successful application of transfer
learning on an existing conditional adversarial au-
toencoder (CAAE). We took a CAAE trained for
age progression/regression of face images and ap-
plied transfer learning to train a model that given
an input face image and BMI, would predict how
that person would look for different BMIs.

Due to time and resource constraints, we settled

on a simple mean difference metric for qualitatively
evaluating the output of our CAAE. Given more time
we would have liked to explore other metrics used
to evaluate autoencoders. Our model uses hyper-
parameters that are standard for GANs and related
architectures; however, in future work it would be
worth exploring how tuning these may improve our
model. Because we found that the amount of pub-
licly available BMI-labeled face images was limited,
it would be interesting to collect labeled data for use
in future work.

7 Contributions

John Romano: During our initial training, we
encountered high losses and blurry output images
that we suspected was due to uncentered face im-
ages. Used the autocrop library to crop and center
the faces, which fixed the problem. Also made a
data augmentation script using the albumentations
Python library that sent us from 4200 to 42000
images (imageconvert.py).

Edward Guzman: Requested the VisualBMI
dataset from Kocabey, E., et al. Helped set up
the AWS instance and ensure that CUDA was being
used correctly for faster training. Modified the Py-
Torch implementation of the autoencoder to support
batch image testing for faster testing. Wrote Python
scripts used to label our augmented images, group
them into evenly distributed buckets, and process
the output images of our autoencoder for evaluation.

Alejandro Bravo: Set up AWS instance and mon-
itored training and testing. Wrote scripts to apply
the BMI classifier to all input images and all out-
put images and publish the results to a CSV file for
ease of analysis on a spreadsheet. Did quantitative
analysis with spreadsheet.

7.1 Github Repos

https://github.com/eguzman3/BMI-CAAE
https://github.com/jromano87/face-aging

References

[1] United States of America, Department of Health and Human Services, Centers for Dis-
ease Control and Prevention. (n.d.). Body Mass Index: Considerations for Practitioners.
https://www.cdc.gov/obesity/downloads/bmiforpactitioners.pdf

[2] Kocabey, E., et al.(2017). Face-to-BMI: Using Computer Vision to Infer Body Mass Index on Social Media.
Retrieved from https://arxiv.org/pdf/1703.03156.pdf

[3] Antipov, G., Baccouche, M., & Dugelay, J. (2017). Face Aging With Conditional Generative Adversarial
Networks. Retrieved from https://arxiv.org/abs/1702.01983

[4] Wang, Z., Tang, X, Luo, W., & Gao, S. (nd.). Face Aging with
Identity-Preserved Conditional Generative Adversarial Networks. Retrieved from

http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang Face Aging With CVPR_2018_paper.pdf

[5] Zhang, Z., Song, Y., & Qi, H. (n.d.). Age Progression/Regression by Conditional Adversarial Autoencoder.
Retrieved from https://arxiv.org/abs/1702.08423

[6] Song, Y., & Zhang, Z. (n.d.). UTKFace. Retrieved from http://aicip.eecs.utk.edu/wiki/UTKFace

[7] Tiddeman, B., Burt, M., & Perrett, D. (2001). Prototyping and transforming facial textures for perception
research. Retrieved from https://ieeexplore.ieee.org/document/946630

[8] N.Ramanathan and R.Chellappa. Modeling age progression in young faces. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 1, IEEE, 2006.

[9] Kemelmacher-Shlizerman, I., Suwajanakorn, S., & Seitz, S. M. (2014). Illumination-Aware Age Progression.
2014 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2014.426. Retrieved
from https://dl.acm.org/citation.cfm?id=2679839

[10] Erik Linder-Noren, PyTorch-GAN, 2018, GitHub Repository, URL:
https://github.com/eriklindernoren/PyTorch-GAN

[11] mattans, PyTorch Implementation of Age Progression/Regression by Conditional Adversarial Autoencoder,
2019, GitHub Repository, URL: https://github. com/mattans/AgeProgression

[12] Francois Leblanc, autocrop, 2019, GitHub Repository, URL: https://github.com/leblancfg/autocrop

[13] Alexander Buslaev, Albumentations, 2018, GitHub Repository, URL:
https://github.com/albu/albumentations

[14] nttps://pytorch.org/docs/stable/nn.html

