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Abstract

This project classifies silicon atoms in crystalline or interface states based on
geometric parameters calculated during molecular dynamics simulations. Classi-
fication is of critical importance when determining the mechanism(s) by which
atoms transition between the two states. A 10 layer neural network with 100
neurons per layer showed good performance, with accuracy exceeding that of
previously-implemented SVMs. The architecture and weights trained on the silicon
data were applied to water data, which shares an underlying bonding structure.
Initializing the neural network with weights from the silicon training and then fully
retraining all layers on water data yielded the best results while saving runtime.
However, retraining with frozen layers saw a steep drop in the model performance
metrics. Future work will test the successful transfer learning methodology on
solid materials with similar underlying structures (i.e. tin or germanium) to see if
the results extend beyond those presented herein.

1 Introduction

One of the grand challenges identified by the US Department of Energy in 2018 asks “How do we
design and perfect atom- and energy-efficient synthesis of revolutionary new forms of matter with
tailored properties?”” To address this question, a diverse community of scientists utilize molecular
dynamics (MD) simulations to model complex material interactions. These programs track the motion
of individual atoms in a system under a variety of thermodynamic and non-equilibrium conditions,
outputting relevant structural geometry and bond information. However, in order to accurately
replicate real-life interactions, MD simulations must track hundreds of thousands of atoms, each
with tens or hundreds of associated parameters at each time step. This not only makes the programs
extremely computationally-intensive, but also makes data synthesis and interpretation increasingly
difficult.

This project focuses on one subset of materials interactions - the phase transition. During a phase
transition, a material undergoes a change in its crystalline structure. Here, we analyze silicon
transitioning between its ambient “crystalline” phase (labeled y=1) to an “interface phase” (labeled
y=0) as it melts (Figure 1). This delineation is set purely geometrically, assigning a label based on
the number and arrangement of bonds on a per-atom basis.
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Figure 1: Definition of crystal, interface, and melt structures with labeling scheme

Using deep learning, this project seeks to assign these labels without specifying the geometric
basis of classification. This enables analysis of a broader range of complex materials for which
little experimental data exists. The model is trained on the results of a silicon MD simulation with
geometrically-specified labels and applied to the results of a water MD simulation. Previous works
employing shallow neural network models applied to phase transitions provide a starting point for
designing model architecture and setting metrics for success.

2 Related work

This work was inspired by a postdoctoral scholar named Rodrigo Freitas in Evan Reed’s research
group who trained a support vector machine to recognize when an atom was about to crystallize using
data from MD simulations. His model was trained with the goal of weeding out interface atoms from
the large amount of data MD simulations yield so further study can be completed just on the interface
atoms.

Outside of Rodrigo’s work, a review by Suchsland et al compares various shallow neural network
models to predict phases for a few simple phase transition models [2]. There have also been reports
that employ neural networks to predict the melting point of ionic liquids [3], relative crystallinity of
zeolites [4], and material phases from Monte Carlo simulations [5]. While the goal of this project is
distinct from that of these reports, they provided guidance for choosing appropriate neural networks
and descriptors to represent atomic structures despite the inability to directly compare results.

3 Dataset and Features

This project utilizes two 500,000-atom datasets from previously-run molecular dynamics (MD)
simulations on silicon (Si) and water. Each atom has a defined local structure based on spherical
harmonics, which relates its position and classification (crystal y=1 or interface y=0) to surrounding
atoms. A family of 21 features is used based on radial structure functions. The data comes courtesy
of Rodrigo Freitas, mentioned above, and each atom is labeled with the correct classification based on
geometric constraints at each timestep of the MD simulation (referred to as the instantaneous dataset).
This enables supervised learning. Preliminary analysis showed a significant imbalance between the
label distribution with 80% “amorphous” (y=0) examples and 20% “crystalline” (y=1) examples.
However, this imbalance is representative of the expected results. Consequently, the train/dev/test
sets maintain this label distribution while ensuring that each set is large enough to include sufficient
“crystalline” (y=1) examples to learn meaningful low-level features. Due to the size of the datasets,
the train/dev/test split is approximately 90/5/5.

4 Methods

The Si and water datasets were preprocessed by normalizing the features to yield a mean of 0 and
variance of 1. The datasets were randomly shuffled prior to creating the training, dev, and test sets.
The primary metrics used to evaluate each model included the f1 score, precision, recall, and accuracy.
A linear support vector machine (SVM) was initially developed as a baseline model, and several fully
connected neural network architectures were subsequently explored, as illustrated in Figure 2. To
account for the imbalance in crystalline (20% of dataset) versus amorphous samples, the crystalline



samples were weighed (w) more heavily in the binary cross-entropy loss function (equation 1) to
optimize the f1 score.

Loss =y —log(§) *w + (1 —y) * —log(1 — (y) (M

The rectified linear unit (ReLU) activation function was used in each hidden layer of the neural
network, and the output layer used sigmoid activation. The models were trained using Adam
optimization with minibatches (batch size = 1024).

5 Experiments/Results/Discussion

5.1 Model Architecture and Hyperparameter Tuning

To explore the neural network architecture, the number of layers and neurons were varied to achieve
the maximum f1 score without overfitting the data. Figure 3 shows the evaluation metrics for a subset
of models that were explored. The initial architecture consisted of 1 hidden layer containing 100
units, and the number of layers were incrementally increased up to 10 layers. The 10-layer network
achieved high training set performance but overfitted the data, so dropout regularization was added.
Additional layers did not further improve the f1 score of the model.

In addition to establishing the model architecture, hyperparameters were tuned to maximize model
performance. Specifically, the loss function weights of the positive examples, alternative activation
functions (leaky ReLU), dropout rate, and learning rate were varied. The positive examples were also
bootstrapped to augment the training set and counteract the imbalance in the data. However, this led
to overfitting the training data with limited improvement in the test performance. The f1 scores and
precision vs. recall curves of the 10-layer model with dropout are shown in Figure 4.

5.2 Instantaneous data

The linear SVM on the instantaneous Si dataset resulted in the following performance metrics:
precision 0.42, recall 0.80, and accuracy 74%. The 10-layer (100 neurons + dropout) neural network
slightly improved the f1 precision, accuracy, and f1 score. The neural network had a runtime of
approximately 20 minutes for full training on AWS.

5.3 Time-averaged data

Because the feature values fluctuate widely at each given timestep, scientists often elect to take the
time average of the labels during analysis. The model architecture optimized on the instantaneous
data was applied to the time-averaged data. Note that time-averaging results in significantly fewer
positive examples (1.2%) compared to the instantaneous dataset. As a result, the optimal loss function
weight ratio for the neural network was 25:1 for positive to negative examples.

As shown in Figure 5, the time-averaged data hit a ceiling of 0.11 on the achievable f1 score. Because
the data labels were assigned on an average basis while the feature remained instantaneous, the neural
network could not find a generalizable pattern comparable to that found by using instantaneous labels.

Final

L =10 layers
pred n'= 100 neurons

Figure 2: Beginning, iterated, and final neural network architectures



Model - Silicon, Loss Function  Precision Recall f1 Accuracy

instantaneous Weight Ratio

(y=1:y=0)
Linear SVM 1:1 00 00 - 80%
Linear SVM 3:1 042 0.80 055  74%
NN, 1 layer 1:1 0.46 0.74 057 78%

(100 neurons)

NN, 10 layers 1:1 047 0.70 056 78%
(100 neurons)

NN, 10 layers 1:1 0.50 0.68 057 80%
(100 neurons) + dropout

Figure 3: Test set performance metrics of various architectures on instantaneous silicon data
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Figure 4: a.) fl score vs. sigmoid cutoff threshold; b.) precision vs. recall curve for best-performing
10-layer/100 neuron neural network with dropout regularization

This indicates that the standard practice of utilizing time-averaged labels will constrain neural network
performance. Future experiments should exclusively use the instantaneous labeling scheme.

5.4 Transfer learning to water

Though Si is a generally a solid at standard temperature and pressure, it shares highly-correlated
bonding geometry with water, typically a liquid under the same conditions. The phase transformation
mechanisms of both materials are still the subject of active research. This section explores the
possibility of transferring the learning done on Si to water. Figure 6 (left) shows the similar bonding
structures. All the neural networks tested during transfer learning had the same architecture as the
10-layer, 100 neurons with dropout model trained on Si, as shown in Figure 2 (right).

Model - Silicon, Loss Function Precision Recall f1 Accuracy
time-averaged Weight Ratio
(y=1:y=0)
Linear SVM 83.3:1 0.03 0.86 006 65%
(balanced)
Linear SVM 25:1 0.00 0.00 -- 99%

(NN optimum)

NN, 10 layers 25:1 0.07 0.35 0.11 95%
(100 neurons)

Figure 5: Test set performance metrics from testing various architectures on time-averaged silicon
data
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Figure 6: Structures of silicon and water showing similar bond geometry; a.) cost as a function of
epoch showing faster learning rate on water data using weights initialized from silicon training; b.) f1
score vs. threshold for models trained using various numbers of frozen layers

54.1 Alllayers unfrozen

Testing the neural network on water data after unfreezing all the layers of the model pre-trained
on Si is equivalent to weight initialization from Si. Figure 6.a. shows the cost as a function of
epoch for several tests run with this Si-initialization and random initialization. The dotted lines
indicate retraining the whole model with only 25% of the training data. The plot shows that the
tests run on models fully retrained using Si-initialization had lower costs than those run with random
initialization. Additionally, retraining the model on only 25% of the training data resulted in slower
learning rates than the trials with 100% of the data, but the cost values equilibrated to similar values.
As a takeaway, initializing the model to Si weight can be used to speed up learning on datasets
of different, new materials.

5.4.2 N layers unfrozen

While running the model on water features after unfreezing all layer of the model pre-trained on Si
results in reduced runtimes, a further reduction in training resources could come from "freezing"
N model layers with Si-initialization. Figure 6.b. shows how the f1 score varies as a function of
threshold on the final sigmoid output layer for Si-trained models re-trained on water data with 1, 2,
and 5 layers unfrozen. The fully-retrained model (no frozen layers) clearly performs the best, and the
shape of the resulting dark purple curve mirrors that observed in the initial Si-training of the model.
Training with 2 layers unfrozen and 5 layers unfrozen drops the f1 score significantly across the
majority of thresholds. Consequently, transfer learning does not yield the same model performance
metrics with N frozen layers. Fully-retraining a network initialized with transferred weights
yields best results.

6 Conclusion/Future Work

In conclusion, a 10-layer, 100-neuron neural network with dropout achieved the highest performance
metrics (f1 score = 0.57) for the Si phase classification problem and outperformed the baseline linear
SVM. The results presented herein are the result of a coarse hyperparameter search limited by the
time constraints of the course. Further model iteration and tuning on the instantaneous Si data could
boost the performance.

One of the primary benefits of transfer learning is the reduction in the quantity of data necessary to
train the model. Our results found reasonable performance emerges when between 25 and 100 % of
the data water set was applied to a model pre-trained on the Si dataset. Future work will refine this
interval further to better specify the amount of data necessary in this scientific context for transfer
learning. Additional directions to explore include extending the model to other material systems and
incorporating time-dependent features to make time-averaged predictions.



7 Contributions

Anjli pre-processed the datasets and ran model training and hyperparameter tuning experiments on
AWS. Shaughnessy worked on the initial AWS and compiled material into the milestone, final report,
and poster. Stephanie developed code using Python, TensorFlow, Keras, and scikit-learn for the
support vector machine as well as sections of code for the neural network and transfer learning runs.
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Coding Language: Python Libraries used: TensorFlow, Keras, scikit-learn, numpy, pandas
Model Training and Analysis code can be found at: https://github.com/tortoisehare/cs230-project



