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Abstract

The objective of this project is to predict subsurface rock properties in wells from
real-time drilling data. Rock properties such as porosity, density, stiffness, satura-
tion, and permeability can be calculated or measured from wireline logs and are of
paramount importance in subsurface resource estimation and exploitation. Drilling
information are available in every well while wireline petrophysical measurements
are expensive and scarce, especially in delineation, production and injection wells.
Drilling parameters are not directly correlated to wireline logs. This problem
is non-linear and the performance of three sequence based learning algorithms
are investigated, namely, Inception Convolutional Neural Networks, Clock Work
Recurrent Neural Networks, and Long-Short Term Memory. The first two models
seem to be more predictive while LSTM suffers from over-fitting to the mean of
the data.

1 Introduction

Drilling parameters are available in every drilled well while rock properties are acquired using
expensive wireline logging tools inserted into the well, which is not available at all depths (the annual
capital spent on wireline logging is more than $2.6 bilions). For example, in exploratory wells, more
data is acquired at the well location as opposed to a production wells. The objective of this project is
to predict rock properties while drilling to help management make real time decisions about borehole
measurements.

Rock properties such as porosity, permeability, saturation, density, etc. are of paramount importance
for subsurface resource assessment and exploitation. Examples of wireline logs of interest include
neutron porosity, resistivity, gamma ray, density, compressional wave velocity, etc. Real-time drilling
information (i.e. rate of penetration, torque, weight on drill bit, etc.) reflect the responses of drilling
subsurface rock layers and are correlated to the bulk properties of rocks. Equinor, previously known
as Statoil, made data from the North Sea oil fields available for research in June, 2018. The Volve
field dataset include wireline logs, mud logs, production data, seismic volumes, and more. Given
real-time drilling information, we wish to predict rock properties at wells as if it had been measured
by wireline logging tools.

We explore three sequence based learning algorithms, specifically, Inception convolutional neural
networks, clockwork recurrent networks, and long-short term memory. Such a feature prediction
model offers an attractive solution for production and delineation wells, where the acquisition of data
is limited.
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2 Related work

We found some existing papers and projects focusing on the wireline log generation and using drilling

data to investigate the lithology of the subsurface. The most relevant papers can be categorized in
two sets:

1. Predicting wireline logs using wireline logs. In [ZYJ18] the authors used an LSTM network to
predict some sections of the logs based on other logs. Fully connected networks have been used in
[PMBH18, BBSNP13] to preform the same task. General regression neural networks are used in the
work by [RMAT09] to predict logs.

2. Identification of the subsurface lithology using the drilling data has been investigated by [MH15].
They used a basic fully connected network and classified the lithology of different layers based on
drilling data and some wireline logs.

To the best of our knowledge, there is no work or publication on predicting logs from drilling data.

3 Dataset and Features

We have a total of 24 logged wells. Each well consists of real-time drilling data and wireline logs.
Six drilling logs are selected for training (Depth, rate of penetration (ROP), weight on bit (WOB),
revolutions per minute (RPM), torque, and Mechanical Specific Energy (MSE)). The corresponding
logs containing the y labels we wish to predict are gamma ray, density, and compressional velocity.
The main data processing steps were:

. To convert logs of interest from DLIS to readable LAS ascii format

. Merge logs from separate files into one matrix, 3) Clean the logs from null values

1
2
3. Interpolate bad and missing data
4. Normalization

5

. Data augmentation was carried out by extracting subsets from the logs with a specific window
size and stride. Each subset is considered as a training example. This implementation
preserves the relative depth relation and provides different snapshots of each well log. By
the end of this process, we generated 29040 training examples from 17 well logs using a
window length of 32, and stride of 4.
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Figure 1: Example of drilling data and well logs for one well

4 Methods

For this project we investigated several network models, namely, CNN-Inception model, recurrent
neural networks and its variations and finally a specific type of RNN called Clockwork-RNN
[KGGS14]. The RNN and its variations (LSTM, GRU and Bi-LSTM) were not predictive for this



project. They mainly suffered from sticking to the mean of the output data, therefore, we didn’t
include them to this report. However, the codes and results are available in our GitHub represitory
[YKS19]. In the following we explain two other methods.

4.1 Inception Convolution Neural Network

The inception model is a convolutional neural network that includes layers with stacked convolutional
output volumes. This is achieved by padding the input such that the convolved output has the same
dimension as its input, no matter what filter size is used. The original purpose of this model is to
have deep networks that avoid vanishing gradients by having wide layers. Theoretically, this model is
useful in our problem because we wish to capture patterns at different scales. Geologic features have
multiscale correlations. The cost function used in learning is the mean square error.

We use 1D convolutions in our model. In other words, the sequences of different data types such as
rate of penetration, weight on bit, torque, etc, are set as channels in the inputs. We do 1D convolutions
because although “valid” convolutions of 1D and 2D inputs are the same, “same” convolutions
produce different results. While “same” 1D convolutions pad only the inputs only vertically, “same”
2D convolutions pad around the whole input image producing more expensive computations and
more bias results.
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Figure 2: CNN architecture
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Figure 3: Inception layer architecture

4.2 Clockwork Recurrent Neural Network

Clockwork RNN (CW-RNN) like Siamese Recurrent Networks (SRNs) consist of input, hidden and
output layers. There are forward connections from the input to hidden layer, and from the hidden
layer to the output layer. However, the neurons in the hidden layer are partitioned into k modules. A
clocking period T, € {T1,--- , T} is assigned to each module. Each module in fully interconnected
internally, but recurrent connections between module j to module ¢ are established only if period T;
is smaller than Tj.

At time step ¢, the RNN output, yg) , is calculated using the following formulae:

v = fa(Wi -yt (M
vy = fo(Wo i) )
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Figure 4: CW-RNN Architecture

The matrix Wy is a block-upper triangular matrix, where each block-row consists of block-columns.
At each forward pass time step, only the block-rows corresponding to the executed modules are used
to evaluate (1):
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Wy; for(t MOD T;)=0
Wyi = .
0 otherwise

Figure 5: Calculation of the hidden unit activations at time step t = 6 in CW-RNN according to
equationl

Hence, resulting in the corresponding parts of the output vector, yg, being updated at each time step.
Whereas, the other parts retain their output values from previous time steps. Therefore, low-clock-rate
modules memorize long-term information from the input sequences, without being distracted by
faster modules. This way, high-speed modules process local high-frequency information.

The back propagation of gradients is similar to regular RNNs. The only difference is that gradients
propagate only from the modules that were executed at time step ¢. Therefore, CW-RNN runs faster
than a regular simple RNN with the same number of hidden neurons, since not all modules are
evaluated at each time step.



5 Experiments/Results/Discussion

5.1 CW-RNN
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Figure 6: CW-RNN Loss Over Epochs and Prediction

CW-RNN training was carried out using 27588 training examples, and 1452 samples for testing. The
model ran for 500 epoch, and optimized using an ADAM optimizer. The learning rate was 0.001,
and the cost function is the mean squared error. Predictions of bulk density are superimposed on the
actual log 6.

5.2 Hyperparameter Tuning

There are 3 hyperparameters need to be tuned for CW-RNN: Number of hidden units, number
of clocking periods, and value of each clocking period. A hyperparameter sensitivity study was
conducted, and the results are summarized in Tables 1 and 2. The model is most sensitive to the
number of hidden units by which the hidden weight matrix Wy is partioned into.

No. Hidden Units Clocking Periods Train MSE | Test MSE
64 [1,2,3,5,8, 12, 18, 24] 4.90 7.63
128 [1,2,3,5,8, 12, 18, 24] 2.73 5.15
256 [1,2,3,5,8, 12, 18, 24] 1.76 3.04
512 [1,2,3,5,8, 12, 18, 24]

Table 1: Sensitivity to Hidden Units

No. Hidden Units Clocking Periods Train MSE | Test MSE
256 [1,2] 1.67 2.89
256 [1,2,3,5] 1.31 3.23
256 [1,2,3,5,8,12] 1.29 2.99
256 [1,2,3,5,8, 12, 18, 24] 1.14 2.69

Table 2: Sensitivity to Clocking Periods

6 Conclusion/Future Work

For the first time a model has been proposed to predict well logs from drilling data. The model
needs to be tested and improved on other fields data sets before deployment. CWRNN for predicting



wireline logs from drilling data works better than the other investigated models, however, 1D CNN
with inception layers are somehow predictive. Other variations of RNN (LSTM, GRU and Bi-LSTM)
suffer from representing the mean of Sequence. The power of CWRNNS lies within their capability
of memorizing data much better than Elman RNNs and LSTMs as they have a structured hidden
layer that does not enforce representing the mean of all inputs (running average in case of the LSTM).
Ideally a hybrid CWRNN-CNN may be the choice for this application. Another reason for superiority
of CWRNN over other RNN is the lower number of parameters that needs to be learned compared to
other RNNSs, while they have an embedded memory.

For the future we are planning to acquire more data train more complex models. Due to the noisy
nature of these data sets a multi-level wavelet transform will be investigated. We also noticed some
non-physical values in the data sets, therefore we will seek consulting from experts to overcome these
discrepancy of data.

7 Contributions

Rayan developed and hypertuned the inception model. He also visualized the open source dataset
including wells, seismic volumes and seismic interpretations on OpendTect to have a better under-
standing of the field.

Mehrdad developed and tuned diffrenet RNN models. He implemented the deep RNN, GRU, LSTM
and Bi-directional version of them. He also did the literature review and suggested to use MSE
(mechanical specific energy) to better represent some human controlled data such as RPM and WOB.

Obai developed and hypertuned the CWRNN model. He found this method in literature and sug-
gested using that, since we had the mean problem with other methods. He also performed the data
prepossessing and augmentation in MATLAB.
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