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Abstract

The project leverages capabilities of modern deep learning techniques such as
GANSs and its variants to address the issue regarding the scarcity of utilizable
medical image data. To undertake this challenge, we evaluate the Unsupervised
Image to Image Translation network, or UNIT on a brain MRI dataset from the
Human Connectome project and the capability to translate between T1 and T2
modalities. Through careful inspection, we improve this method by incorporating
self-attention layers, spectral normalization, and charbonnier penalty. The report
describes the effectiveness of these techniques in the results obtained.

1 Introduction

In the medical community, utilizable image data is scarce because of the high costs of acquisition,
rarity of patient conditions and patient confidentiality. This issue affects the generalizing capability
of machine learning models trying to solve various problems like classification and segmentation in
the medical domain. We aim to create utilizable translations of medical images between different
modalities that would reduce the number of times medical devices would need to be used and increase
the data available to doctors. This would help the machine learning community utilize disjointed data
sets together. For example, if a certain MRI dataset is publicly available and if we could generate the
corresponding CT scans for every image in the dataset, researchers can use both sets of images to
further improve their results.

For this project, we are focusing on the translation between T1-weighted and T2-weighted brain MR
images. The basic difference in the T1-weighted and T2-weighted images is that in T1-weighted,
tissues with high fat content appear bright and compartments filled with water appear dark while
it is the opposite in T2-weighted images. We are using a popular model used for image to image
translation called UNIT proposed by Liu et al. (2), to do the translation across T1 and T2 domains as
presented by Welander et al. (3). Further improvements on this baseline architecture are proposed to
enhance the model’s capability to reconstruct complicated, but necessary brain structures by using
techniques such as self-attention and spectral normalization.

2 Related Work

There is currently active research being conducted using GANSs for generating synthetic data and
doing image to image translations. For our baseline, we have replicated the results presented by
Welander et al. (3) using the same dataset. The code used by the authors to implement the reults of
the paper is available on Github (4). The code used by us can be found at Project Code. Here, the
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UNIT architecture proposed by Liu et al. (2) and CycleGAN proposed by Zhu et al. (5) are used
for image translation between T1-weighted and T2-weighted brain MR images. In our project, we
are only implementing the UNIT architecture. UNIT and CycleGAN were originally proposed to
solve problems due to the unavailability of datasets consisting of paired images for translation. Their
results show feature translation in images that include animals, faces, street views, seasons etc. In the
medical imaging domain, Wolterink et al. (6) proposed a GAN consisting of two synthesis CNNs
and two discriminator CNNs to translate MR images of the brain to CT images using unpaired data.
Armanious et al. (7) presented a novel architecture called MedGAN which can be used for translation
between PET and CT scans. Architecture of MedGAN is based on a popular model called UNet by
Ronneberger et al. (8) which is widely used for segmentation of medical images.

3 Dataset and Features

We are using the dataset provided by the Human Connectome Project (1). The dataset consists of
T1 and T2-weighted 3D volumes of brain MR images of 1113 patients and also includes the brain
segmentations. All the images have been registered to a common template brain, such that they are
in the same position and of the same size. Similar to the baseline work by Welander et al. (3), the
data were split into a training set of 900 images in each domain. The remaining 213 images, in each
domain, were used for testing. Images are coloured with 304x256 resolution. Fig 1 shows an example
of the ground truth image in each domain.

(a) T1 Ground Truth Image (b) T2 Ground Truth Image

Figure 1: Example from dataset.

4 Methods

In the baseline implementation, the model UNsupervised Image to image Translation, or UNIT by Liu
et al. (2) is being used to transform MRI images across its T1 and T2 domains. The model achieves
this by learning the joint distribution between the two domains. With consideration of coupling theory
in (9), learning the joint distribution from its marginal distributions is an ill-posed problem due to
infinite possible sets of joint distributions. The baseline algorithm mitigates this through the use
of the shared latent space assumption, which speculates that corresponding images can be mapped
to the same/similar latent representation given a shared latent space. The overall UNIT framework
implements this through the use of Variational Autoencoders by Larsen et al. (10) with Coupled
GANS in Liu Tuzel (11) or VAE-CoGANSs. In the framework, two encoders are used to map the
images onto a shared latent space by tying their last layers together as well as sharing the first higher
levels of its two generators to produce domain-translated images. The framework is represented in
Fig 2.
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Figure 2: (a) The shared latent space assumption. (b) The proposed UNIT framework.



Liu et al. assume a pair of corresponding images (x1, 2) in two different domains ; and x2 can be
mapped to a same latent code z in a shared-latent space Z. I/; and E5 are two encoding functions,
mapping images to latent codes. (G; and G5 are two generation functions, mapping latent codes to
images as shown in Fig 1(a). E1, Es, G1 and G are represented using CNNs and implement the
shared-latent space assumption using a weight sharing constraint where the connection weights of
the last few layers in £} and Ej are tied (illustrated using dashed lines) and the connection weights
of the first few layers in G and G5 are tied. Here, z1 ! and 237? are self-reconstructed images,
and 21 2 and 23! are domain-translated images. D and D, are adversarial discriminators for the
respective domains, in charge of evaluating whether the translated images are realistic.

After careful review, the architecture yielded good replication of larger brain structures such as
the gyri, or the bumps on the edges of the brain and the sulci or grooves/fissures between tissues.
However, in the lower center part of the brain, these structures were more detailed and the images
generated started fused these components together leading to several inaccuracies in the translations.

In addressing this issues, the techniques from Zhang et al. (14) were investigated and applied to
examine the effects it had on the UNIT architecture. The augmentations selected were the varying self-
attention layers and Spectral Normalization. The self-attention layers as seen in Fig 3 is implemented
with 1x1 convolutions for 3 different outputs. These 2 outputs are multiplied together and extract
the attention maps via softmax to determine 3; ;, a mask interpreting the impact of location i in
rendering location j. The third result is used as feedback to reflect the features currently used. This is
represented with the equation y; = (7y)o; + x;. -y was initialized to 0 so the model can first examine
the local spatial information before refining the image. Spectral Normalization by Miyato et al. (16)
is performed on the weights of each layer of the encoder, generator and discriminator of the model. It
is a simple enough technique that does not require extra hyperparameter tuning. This method has
been proven to use less discriminator updates per generator update and hence considerably reduced
computational cost during training.

Figure 3: (a) Self-attention network layer with equation, (b) self-attention example

An additional modification conducted was the use of the charbonnier penalty function (p(z) =

Va2 + €2) in order to regulate between L1 and L2 regularization as L2 regularization has been known
to heavily penalize outliers.

5 Experiments and Results

We implemented different models as mentioned in Section 4 i.e., Self Attention, Spectral Normaliza-
tion and different Loss Functions. We use ADAM with Ir = 0.0001, 51 = 0.5, B2 = 0.999, binary cross
entropy loss for the Generator and Discriminator, MAE loss for the reconstruction stream and VAE
loss (MSE) for the encoder and cycle consistency constraint. Network architecture details are given in
Table 3 of (2). We analyzed the results for each model qualitatively and quantitatively. The modified
UNIT architecture inspired by (14) is shown in Fig 4. Fig 5 shows the translation and reconstruction
of the T1 and T2 images for a single sample for the baseline model and our model that performed the
best: Self-Attention UNIT with attention implemented in the encoder part of the model, with Spectral
Normalization in the Encoder, Generator and Discriminator, and Charbonnier Loss Function. Figure
6(a) compares the loss of 3 different models - the baseline UNIT, UNIT with Charbonnier Loss and
UNIT with Attention, for every epoch. Figure 6(b) compares the loss between the Self Attention
UNIT and the Spectral Normalized UNIT models.

Fig 7(a) shows the quantitative results for various models implemented using a scoring method called
Structural Similarity Index (SSIM) proposed by Wang et al. (15), at the 75th epoch of training. Fig



Self-Attention
UNIT

T1 and T2 Ground Truth Images Reconstructed Image Translated Image

Figure 5: The translated images and reconstructed images for the baseline model (top) and Self-
Attention UNIT (bottom).

7(b) is a table comparing the SSIM scores between the baseline UNIT model and our best model
obtained (UNIT with Self Attention, Spectral Normalization and Charbonnier Loss) over epochs 1,
25, 50, 75, 100.

(a) Baseline, Charbonnier and Attention Loss (b) Self Attention and Spectral Normalization Loss

Figure 6: Generator and Discriminator Loss for different models.

6 Discussion

6.1 Qualitative Analysis

The main limitation that we observed in the translation performed by the baseline was that it did not
reproduce the intricate details of the brain structure with good fidelity. As we can see in Fig 8, the
bridge separating the left and right lobes is blurred in the translated images produced by the baseline.
Our best model was qualitatively better at reproducing the intricate details. It is evident from Fig 8
that the translation performed by our best model reproduces the bridge separating the two lobes with
better fidelity and the structures are clearer.

6.2 Analysis of the loss

As seen in Fig 6, the combined generator and combined discriminator loss with respect to the baseline
and each respective modification has been illustrated across the different epochs. This has been
done to determine when/where overfitting may between the generator and the discriminator. In the
baseline, the overfitting appears to occur around 13 epochs, while charbonnier occurred around 11,



Epoch
Model No. SSIM
Model SSIM T1 T2

T1 T2 Baseline 1| 07596 | 0.7141

Baseline (RGB) 0.7563 | 0.716 25 0.724 | 0.7086
Baseline (gray scale) 0.7617 | 0.7217 50 | 0.7561 0.716
Baseline with Charbonnier loss (CL) 0.7584 | 0.7181 75| 0.7563 | 0.7145
Baseline with Spectral Normalization (SN) 0.7108 | 0.7402 100 | 0.7567 0.716
Attention in generator 0.7166 | 0.5743 Self-Attention UNIT 1| 0.6427 | 0.6245
Attention in generator with CL 0.7134 | 0.5256 (with spectral normalization, 25| 0.7396 | 0.6502
Attention in generator with CL and SN 0.6722 | 0.6678 charbonnier loss) 50| 0.7341| 0.651
Attention in encoder with CL and SN 0.7443 | 0.6834 75 0.7443 | 0.6834
100 | 0.7486 | 0.7176

(a) SSIM scores for different models after 75th epoch
(b) SSIM scores for the baseline model and our best
model over epochs 1, 25, 50, 75, 100.

Figure 7: Quantitative Results.
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Figure 8: Qualitative Comparsion of Baseline and our best Model.

and attention occurred since the first epoch. However, after applying the self-attention layer with the
spectral normalization and seeing its effect separately, we see almost no overfitting occurring as both
the generator and discriminator were actively tricking each other and improving the result.

7 Conclusion/Future Work

We demonstrated improved fidelity in translating medical images from one modality to another using
GANSs. The biggest challenge was obtaining a quantitative evaluation metric that would reflect the
results obtained qualitatively by the different models. We considered different evaluation scores like
the Inception Score, Average Pixel Accuracy and Structural Similarity Index (SSIM). Among these,
we decided to choose SSIM as we wanted to focus on how the images generated by the different
models compared with the ground truth images with respect to the minute details and structures
present in the brain. The SSIM is calculated between the ground truth image and the translated image
generated by the model. The table in Figure 7 shows the different SSIM scores we obtained for the
different models on the test dataset. The final scores mentioned in the table are the scores averaged
over the images in the test set. According to the scores in table in Figure 7, our modified model after
training for 100 epochs performs similar to the baseline model. However, as mentioned in the section
describing the results qualitatively, we think our model actually performs better than the baseline with
regards to the structural details. In this regard, in future, we would like to utilize some other metric to
better quantify the results as it is difficult to optimize something which we are not able to quantify
properly. Some other possible ways to obtain a score are by segmenting the smaller structures in the
brain and then just comparing the segmented images. Another possible way is to use descriptors like
SUREF or SIFT to obtain features in the images and then compare them. Another analysis as shown in
the table in the Figure 7(b) shows that our model performs better with training over the epochs and
the baseline model did not improve that much after training over the epochs.



8 Contributions

Aditi Maheshwari: Initial literature review to select the project, setting up dependenicies to help
replicate baseline code and intergrating charbonnier penalty in final work.

Ketan Pant: Initial literature review to select the project, literature review to add extensions to the
baseline i.e Self-Attention, Spectral Normalization (SN) etc. and integrate self attention and SN in
final work.

Putting everything together to a final model and comparing various models was a combined effort.
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