News Classification Model Final Report

Xiaobo Zhang, Yuhao Zhang
Stanford CS230 Students
{bobz, njzyh}@stanford.edu
Github Link: https://github.com/bobzhang199102/news_classifier_with_birnn.git

Abstract

This report presents a design of a news classification system based on various ML models. We
experimented Bidirectionally with RNN and MT-DNN with different sets of hyperparameter tunings. The
bidirectional RNN was implemented with Tensorflow on AWS ML platform and the MT-DNN is using
Pytorch within a Docker environment. The results show an accuracy of 0.6028 for bidirectional RNN and
an accuracy of 0.3349 for MT-DNN.

1 Introduction

Newsfeed applications are growing exponentially in the big data area. Even though there are a lot of news
to explore, there are challenges to find news that meet the users’ interest. One of the major tasks for
those intelligent applications is to recommend personalized feeds to users. The core of a
recommendation system is usually a ML-based model that categorizes news feeds based on its content
and metadata to make recommendations based on a user activities. This project proposes a news
content classifier that classifies text news content that sets predefined labels. The input to the system is
text format news content (a combination of title and content) and the output is one of the predefined labels
of the news categories.

2 Related Work

The exploration of text classification has a long history. The challenges residing inside the text
comprehension is the key to understanding our language and demonstrate the potential of machine
learning. This research domain has been gaining increased popularity recently [1, 2] due to many newly
developed algorithms, tools, and techniques.

Many previous research and algorithms have been evaluated for similar tasks [3, 4, 5]. Previous findings
have created a solid foundation, enabling us to apply some newly invented algorithms, such as MT-DNN
[7], to solve text classification problems. We also benefit from more powerful tools, like Tensorflow [8] and
more comprehensive word embedding techniques.

In this project, we apply both the traditional bidirectional RNN [6] and the pioneering MT-DNN [7] to the
news classification problem. We used the GloVe [9] embedding for the RNN and BERT [10] for MT-DNN.
Their performance is analyzed.

3 Dataset and Features

The dataset is General News Category Dataset from Kaggle. The Json file contains 202,372 records and
a total of 41 distinct categories. Since we have a relatively large amount of data and the median amount

of categories, we used 10% of the data for validation and 10% for the test. Each record contains the
following attributes:

e category: Category article belongs to
headline: Headline of the article
authors: Person authored the article
link: Link to the post
short_description: Short description of the article

e date: Date the article was published
The following is an example:
{"category": "CRIME","headline": "There Were 2 Mass Shootings In Texas Last Week, But Only 1 On TV",
"authors": "Melissa Jeltsen",
"link™:"https://www.huffingtonpost.com/entry/texas-amanda-painter-mass-shooting_us_5b081ab4e4b0802
d69caad89", "short_description": "She left her husband. He killed their children. Just another day in
America.", "date": "2018-05-26"}

For bidirectional RNN with attention, we use the following mechanisms for preprocessing of the data:

e Gensim for vector space modeling.

e NLTK for text data processing.

e GloVe for word embedding.
For MT-DNN, we apply the author published code (https://github.com/namisan/mt-dnn) to our dataset. We
still use most of the above libraries to preprocess our data but the code training model uses BERT
instead.

4 Methods

4 1 Bidirectional RNN

Format and Clean Data: we connected “title” and “short_description” together because we usually see
the title carries equally important information as a description. The connected texts are tokenized by
NLTK library. Then we filtered out unusually short ones (less than 5 words) from the results to clean up
abnormal data. We use Keras pad_sequences to pad all sequences to 50 for the batch process. We also
clean up some non-alphabetical characters, converted sentences to lower case, etc. to ease the training.
Generate Integer Label from Category Attribute: to make the training easier, we mapped each
category to an integer value to simplify the output evaluation.

Split Dev, Validation and Test Dataset: we use the sklearn train_test_split function to split the dataset to
90% dev and 10% validation. Note that the test portion was already manually removed previously.
Embedding Layer: we use the pre-trained GloVe for word embedding. It provides a dense vector
representation for each word so that similar words are treated similarly instead of spreading over a sparse
matrix.

Bidirectional RNN Layer: we use two LSTMs to handle the text from beginning to the end and the
reverse. Each of the LSTM is also wrapped with a dropout layer to prevent overfitting. The softmax output
of the RNN layer goes through an attention layer to help the model understand the context of each
component.

Fully Connected Layer: the output layer is a fully connected layer to produce one of the 41 categories of
the news content.

Calculate Loss: after each epoch iteration, we calculate the loss with tensorflow
sparse_softmax_cross_entropy_with_logits loss function. We also apply Adam optimizer to minimize the
loss.
Hyperparameters: Different values of hyperparameters have been tried to achieve the best accuracy in
the models and the best hyperparameters are as follows:

e Learning Rate: 1e-3

e The number of units in the LSTM cell: 100

e Embedding size: 300

e Dropout: 0.8

Format and Clean
Data

l

Generate Integer
Label from Category
Attribute

l

Split Dev, Validation,
Test Dataset

l

Epoch Begin

l

Embedding Layer [<

l

Bidirectional RNN
Layer

I

Fully Connected
Layer

l

Calculate Loss

l

Calculate Accuracy
Against Validation
Set

l

Epoch End

Figure 1. Bidirectional RNN with attention implementation

4.2 MT-DNN

MT-DNN is a novel NLP model leveraging BERT [10]. They are both trained via pretraining and
fine-tuning stages. The key difference is that MT-DNN uses Multitask Learning in the fine-tuning stage
with four types of task-specific layers. Those layers perform various NLP tasks and combine the results to
a final prediction. They all share the same lower level layers, which are responsible for major embedding

tasks.

P(c]X) Sim(Xy, X2) P.(R|P, H) Rel(Q,4)
(e-g., probability of (e.g., semantic (e.g., probability of (e.g., relevance score
Iabeling text X by c) similarity between X, logic relationship R of candidate answer 4

and X;) between P and H) given query Q)
Task specific ? “ T “
layers
Single-Sentence Pairwise Text Pairwise Text Pairwise
Cl i i imilari CI ifi i Ranking
(e.g., ColA, SST-2) (e.g., STS-B) (e.g., RTE, MNLI, (e.g., QNLI)
WNLI, QQP, MRPC)
x LY
i ! i !
1,: context embedding vectors, one for each token.
‘ Encoder (ing layers) ‘
Shared T
layers
1;: input embedding vectors, one each token.
'y
|
{ Lexicon Encoder (word, position and segment) ‘

X: asentence or a pair of sentences

Figure 2. This diagram is from [7] to show the architecture of MT-DNN.

4.2.1 Implementation

For most of the parts, we apply the author published code (https://github.com/namisan/mt-dnn) to our
dataset, with the following minor modifications:
1. We replaced the train and test dataset with our own inputs and labels, which uses the same
mechanism in the previous bidirectional RNN approach to clean up and filter data.
2. We added one more fully connected layer to convert the output to the desired 41 category
integers.
We tried to use the same hyperparameters introduced in the original paper [7], which reflected a learning
rate of 5e-5, a batch size of 32, a maximum number of epochs of 5, a dropout rate of 0.1, a clipped
gradient norm within 1. However, we ran the model in docker on our personal Macbook. We had to turn
off the GPU acceleration option and we had to downsize the attention layer size from the default of 128 to
32. The max sequence length was also reduced from the default 512 to 64 given that the news data was
typically short.

5 Experiments/Results/Discussion

5.1 Bidirectional RNN

After tuning of hyperparameters, the best accuracy achieved for the Bidirectional RNN model was 0.5453.

Training Losses Validation Accuracy
- Training losses
25 05
04
20
03
15
02
10
01
05 00 — Validation Accuracy
r T r T T T T T T T T T
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Figure 3. Training Losses and Validation Accuracy of Bidirectional RNN.

5.2 Bidirectional RNN with Attention Results

After the tuning of hyperparameters, the best accuracy achieved for the Bidirectional RNN model was
0.6028.

Training Losses Validation Accuracy

Training losses
351 06

30 0s

25
04

20
03

02

10

01
05 1

0.0 —— Validation Accuracy

00

1) 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Figure 4. Training Losses and Validation Accuracy of Bidirectional RNN with Attention

5.3 MT-DNN Results

Due to the resource limitation and docker virtual machine limitation mentioned above, we had to run the
model in a degraded mode. The best accuracy in test dataset was 0.3349 and 0.3760 when training the
data set. Most of the wrong results were concentrated on Crime related news.

5.4 Discussion

The Bidirectional RNN with Attention has better performance.

MT-DNN wrong predictions concentrate in the Crime category. The main reason might be that there was
more special terminology in the Crime category than other categories.

6 Conclusion/Future Work

The Bidirectional RNN with Attention can achieve good accuracy, which is better than Bidirectional RNN.
In addition, when more data was used for training the accuracy increased. Hyperparameters significantly
impacted the accuracy of the models, so tuning hyperparameters was essential.

We did not have enough time and computing resource to explore MT-DNN in greater depth. However, this
is a novel and interesting algorithm. If we had time to migrate the original codes from local docker to AWS
platform, we should have been able to run the algorithm with the same parameters in the paper and
compare the algorithm with Bidirectional RNN fairly.

7 Contributions

Both team members have equal contribution to the project. Each person joined in the entire process of
the project.

Reference

[1] Hingmire, S.; Chougule, S.; Palshikar, G. K.; and Chakraborti, S. 2013. Document classification by
topic labeling. In SIGIR, 877-880.

[2] Lewis, D. D. 1992. An evaluation of phrasal and clustered representations on a text categorization
task. In SIGIR, 37-50.

[3] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780,
1997.

[4] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

[5] I. Sutskever, J. Martens, and G. E. Hinton. Generating text with recurrent neural networks. In ICML,
2011.

[6] Schuster, M., and Paliwal, K. Bidirectional recurrent neural networks. IEEE Transactions on

Signal Processing 45, 11 (Nov. 1997), 2673—2681.

[7] Liu, X., He, P., Chen, W., and Gao, J. Multi-task deep neural networks for natural language
understanding. CoRR, abs/1901.11504, 2019.

[8] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,

Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.

Tensorflow: A system for large-scale machine learning. Tech. rep., Google Brain, 2016. arXiv preprint.
[9] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for
Word Representation

[10] R. Jeffrey Pennington and C. Manning. Glove: Global vectors for word representation. 2014.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.

