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Abstract

Biological imaging provides a rich source of information to evaluate hypotheses across a
range of disciplines. However, acquisition time is a limiting factor to most imaging platforms, as
there is a fundamental tradeoff between data quality and the amount of time required for data
collection. Here we present a proof-of-concept for SuperMIBI, which takes advantage of advances
in deep neural networks—specifically convolutional neural networks (CNN)—to tackle this
problem by predicting upsampled, denoised multiplexed imaging data from noisy, low quality
data collected at short acquisition time. We use a simple CNN architecture to predict signal
intensity in multichannel data from input collected at one-fourth the acquisition time. We
compared our network’s performance with an analogous denoising method. After several
iterations of modifying the network architecture, we were able to obtain predicted outputs that
are starting to look similar to the ground truth output, though underperforming when compared
with the baseline method.

Introduction

Imaging is a one of the most critical tools used in experimental biology. Traditional
imaging platforms, such as fluorescence microscopy have enabled important and novel insights
into basic biological mechanisms. However, imaging experiments often require non-trivial data
collection times for data with sufficient quality and resolution. This process would be more
efficient with a method to predict the output of this labor-intensive process using images
collected over a shorter duration. Recently the ability to employ deep learning to restore image
data quality was robustly demonstrated for fluorescence microscopy. However, no analogous
solution for mass spectrometry-based imaging has been produced. Here, we will be leveraging
imaging data generated by Multiplexed lon Beam Imaging (MIBI), a high dimensional mass
spectrometry imaging platform for biological tissues, developed by our lab at Stanford. Unlike
traditional optical imaging platforms, MIBI employs secondary ion mass spectrometry to avoid
the spectral overlap of fluorophores enabling much higher dimensional imaging of cells in tissues.

Similar to the relationship between fluorescence data quality and image exposure time,
MIBI data quality is limited by a parameter called the dwell time, which dictates how long the
imaging platform spends collecting data in each pixel of a region of interest (ROI) in tissue. Here
we present SuperMIBI, a CNN- based approach to tackle this problem by predicting. This network
takes as input multichannel MIBI images collected at short acquisition time and outputs predicted
images with reduced noise and signal intensity collected at a four-fold increase in acquisition
time. Implementing SuperMIBI into both routine MIBI experiments as well as more specialized
imaging problems described previously, will significantly reduce the throughput required for high
quality data generation. This will ultimately increase the pace at which new insights in various
fields of tissue biology can be generated.



Related Work

Deep learning has been applied to several problems in the field of biological imaging*>.
One recent application similar to our problem was the introduction of the content-aware image
restoration CNN (CARE-CNN), which employed a CNN architecture to denoise and restore
fluorescent signal in biological images. Interestingly the authors of this network were able to
overcome a lack of input data by creating low-quality images in silico. While not pursued here,
access to training data is also an obstacle for our problem so methods such as those employed
by the CARE authors could be pursued in future work. Another strength of this paper was the
utilization of non-local means denoising as a traditional approach to image improvement, which
we decided to pursue as our baseline to compare against our model’s performance. In addition
to specific biological applications, the super-resolution CNN (SCRNN) published by Dong et al
demonstrated the ability to use a simple network architecture to upsample low-resolution and
quality images®. Given the simplicity of this network’s architecture—its biggest strength—and
reasonable performance, we opted to build the SuperMIBI framework from this model.

Dataset and Features

Our dataset comprised three X and Y pairs of images, all of which had a size 1024 x 1024
x 36. However, for our proof-of-concept SuperMIBI network we opted to train and test over two
out of the 36 channels collected. The input data (X) was collected at one-fourth the image
acquisition time of the paired output (Y). Moreover, the output images were denoised with our
lab’s intensity-based k-nearest neighbor denoising algorithm3. An example of a paired X and Y
example for one channel measured, CD45, a protein on the membrane of immune cells, is shown
in Figure 1. Each of the input images was cropped into images of size 128 x 128 x 2 with a stride
of 43. Next, we assigned 95% of our data set for training and the remaining 5% for testing. During
training we performed data augmentation with the Keras ImageDataGenerator class by
implementing 180°image rotations between epochs of training, as well as vertical and horizontal
flipping’. As a baseline to evaluate our model against we employed non-local means (NLM)
denoising, which at a high-level works by coloring pixels based on the appearance of related
pixels®. We employed the ‘fast-mode’ implementation of this noise processing approach
provided by scikit-image®. We qualitatively compared the NLM denoising output with the input,
ground truth, and our model’s predicted output.

Figure 1: Training example of short and long acquisition data for one channel.

Input Example: Short scan Desired Output (Ground Truth) Example:
time, low quality, noisy Long scan time, bright signal, no noise

Image shows a protein called CD45
on immune cells in human tonsil
tissue.




Methods and Model Training
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Figure 2 (adapted from Dong et al): SRCNN basic network architecture.

Non-linear mapping Reconstruction

We built the SuperMIBI model architecture from the basic architecture of the SRCNN
(Figure 2), which has three layers to first extract patch features of the image, perform non-linear
mapping, and reconstruct the predicted upsampled RGB image. This network uses convolutional
layers with a stride of 1 and ‘same’ padding followed by batch normalization, and ReLU activation
functions. Weights were initialized with Xavier initialization. The loss function used for training
the model was mean-squared error (MSE):
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The loss was minimized over using standard backpropagation with a learning rate of 0.001 and
batch size of 32 with an L2 penalty for weight regularization of 0.01:
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In the SRCNN paper the authors use filter sizes of 9-1-5 for the three layers, respectively, and
recommend using 64 filters for the first layer and 32 filters for the second layer. However, when
we used these parameters, we observed poor performance that was improved by 1) Increasing
the filter size of layer 1 to 11 x 11 to convolve over larger features in the image and 2) Increasing
the total number of filters in layers 1 and 2 to 128 and 64, respectively, which improved the
accuracy, though at the cost of increased time for training. One important adjustment we made
was to standardize our data by z-scoring on a per channel basis to have a mean of 0 and unit
variance. Since the dynamic range of signal varies across channel and between input/output
pairs, this step was critical for improving model performance. Figure 3 displays the loss over
training for the final iteration of our model on the dual-channel dataset.



Figure 3: SuperMIBI loss over the course of training.

Model Loss

36.5 Results and Discussion
Unlike in traditional
3607 imaging applications, where
355 4 different RGB channels represent
the same underlying features, the
350 different channels in our image
8 345 represent completely different cell
types, as many cells would be
34.01 expected to be positive for certain
335 markers and negative for others.
Thus, we started by optimizing our
33.0 1 network on a single channel to
mEl . ' | | | . : avoid this confounding behavior
00 25 50 75 100 125 150 17.5 (Figure 4a). We found that the filter

epoch

size of the first feature had a
dramatic impact on the output of the network, with small filter sizes not being able to understand
the spatial layout of the cells, whereas large filter sizes produced blurry images. We found that
our loss plateaued dramatically after 5 epochs, and further training produced little benefit.

We next switched to a more challenging marker, CD45 (Figure 4b), which marks only the
border of our cells. We found that the network struggled to correctly identify the circular shape
of these cells. Adjusting the filter size produced different outputs, but none was able to
recapitulate the true underlying shape of the cell. We identified a similar plateau in the loss
function.

We then integrated these two markers together (Figure 4c), in order to see if the network
could learn from the easier marker how to interpret the more challenging marker. We
hypothesized that the additional information from the cells that were positive for both markers
would allow the network to achieve better performance. However, in general we found that
incorporating the more challenging marker not only produced poor results on that marker, as in
the original single channel evaluation, but that it resulted in poor performance spillover into the
channel that had previously been achieving decent performance. This will likely require further
optimization in the future in order to circumvent this problem.
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Figure 4: Model experiment output examples. A) Ki67, nuclear protein B) CD45, membrane
protein C) Model trained on multichannel (Ki67 + CD45) image input.

Conclusion and Future Directions

Overall our experiments demonstrate the potential to apply CNNs for upsampling MIBI
data, but further development is necessary to produce a model that performs this task accurately
across both single channels and, ultimately, in highly multiplexed datasets. One of the biggest
challenges with our dataset is the sparsity and non-Gaussian distribution of signal in MIBI images.
SuperMIBI currently struggles to distinguish signal, which is characterized by higher intensity and
spatial density, from noise, which is sparser and more pixelated. This might be improved with a
more complex network architecture that can utilizes filters with kernel sizes that can resolve both
the granular and global structure of signal in the image. We plan to explore architectures, such
as those used in the CARE-CNN. With further tuning of SuperMIBI we plan to implement it into
our data collection pipeline in order to improve the efficiency and throughput of biological
imaging experiments peformed with MIBI.

Code

Scripts & documentation are available at: https://github.com/ngreenwald/SuperMIBI.

Contributions

Noah worked on implementing the data importation, cropping, and augmentation as well as
implementing the model architecture and running experiments. Erin worked on data collection
and processing, performing the NLM denoising baseline comparison, implementing visualization
scripts, and data normalization/standardization. Both teammates evaluated results of
experiments and discussed next steps for implementation and tuning (i.e. modifying network
architecture, adjusting filter size or numbers, etc.), and worked on preparing figures and text for
the final report and poster.
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