Manga-to-Anime Translation Using Cycle-Consistent
Generative Adversarial Networks

Jonathan Griffin Department of Computer Science
Stanford University
jgriffi2@stanford.edu

Abstract

This paper presents GANime: a generative adversarial network that uses cycle-
consistency to perform on the manga-to-anime task. The architecture used is that
of CycleGAN. The main contribution of this paper is the effort to translate one
page of manga that contains multiple panels into an equivalent animated version.
This task proves difficult due to the lack of a manga dataset that contains single
images as opposed to multiple panels.

1 Introduction

Over the past few years, manga and anime have became widely popular. Therefore, there has been
an increase in production of both manga and anime. One major part of the industry is adapting
widely popular manga series into anime. Unfortunately, it is often the case that these animators are
overworked and underpaid.

For this reason, I introduce GANime: a manga-to-anime translator that uses cycle-consistent genera-
tive adversarial networks (GANs). The input to the network are images from the manga and anime
domain, and the output are translated images into the anime and manga domain.

2 Related Work

CycleGAN is one of the main pieces of work related to GANime [14]. It introduces the idea of
translating images from domain to domain while maintaining consistency. In addition to CycleGAN,
[6] and [12] discuss interesting concepts pertaining to consistency within GAN networks.

There are also other works that focus on manga or anime-style GAN networks [2], [7], [4], [13], [11],
[10], [3]. These works tackle areas such as Style Transfer, Colorization, Character Generation, and
Sketching. However, none of them try to use cycle-consistency within their network architecture for
their specific task and only one covers domain-to-domain translation in the manner I wish to address
[10].

3 Data

The dataset used for GANime was divided into two domains: manga and anime. The detail about
each of the datasets are given in Sections 3.1 and 3.2. Each image is of shape 256x256 and each
domain uses a training-validation-testing split of 80%-10%-10%. Each domain has 2000 images, so
each training set has 1600 images, each validation set has 200 images, and each testing set has 200
images.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Figure 2: Example images from Nico-Illust and Danbooru2017.

3.1 Manga

The manga dataset is a subset of Manga109 [9], [8]. Manga109 consists of manga pages from 109
manga volumes drawn by professional manga artists. Domain X consists of random images from
Mangal09. Examples of images from the manga dataset are shown in Figure 1.

3.2 Anime

The anime dataset is a subset of Nico-Illust and Danbooru2017 [1], [5]. Together, Nico-Illust and
Danbooru2017 have over 3 million hand-drawn anime-style images taken from a public website.
Domain Y consists of random images from Nico-Illust and Danbooru2017. Examples of images
from the anime dataset are shown in Figure 2.

4 Method

This section describes the architecture (Section 4.1), the loss functions (Section 4.2) and the imple-
mentation (Section 4.3). Each of them are discussed in more detail in their corresponding section
below.

4.1 Architecture

The architecture used for the manga-to-anime task was the same architecture that was used in
CycleGAN. There are two domains, X and Y, two generators, G and F', and two discriminators D x
and Dy . Generator G translates an image from X to Y and Generator F' translates an image from Y’
to X. Discriminator Dy tries to determine if an image is an image generated from F or is an image
originally from X. Discriminator Dy tries to determine if an image is an image generated from G or
is an image originally from Y.

[Layer | Activation Size | | Layer | Activation Size |

Input 256x256x3 Input 256x256x3

4x4x64 convolution, stride 2 128x128x64 7x7x64 convolution, stride 1 128x128x64

4x4x128 convolution, stride 2 64x64x128 3x3x128 convolution, stride 2 64x64x128

4x4x256 convolution, stride 2 32x32x256 3x3x256 convolution, stride 2 32x32x256

5 4x4x512 convolution, stride 2 1x1x512 9 Residual block, 256 filters 32x32x256

4 4x4x512 deconvolution, stride 2 16x16x1024 3x3x128 deconvolution, stride 2 64x64x128

4x4x256 deconvolution, stride 2 32x32x512 3x3x64 deconvolution, stride 2 128x128x64

4x4x128 deconvolution, stride 2 64x64x256 7x7x3 convolution, stride 1 256x256x3
4x4x64 deconvolution, stride 2 128x128x128

4x4x3 deconvolution, stride 2 256x256x3

Table 1: Generators, (left) U-Net, (right) Res-Net.

| Layer | Activation Size |
Input 256x256x3
4x4x64 convolution, stride 2 128x128x64
4x4x128 convolution, stride 2 64x64x128
4x4x256 convolution, stride 2 32x32x256
4x4x512 convolution, stride 1 32x32x512
4x4x1 convolution, stride 1 32x32x1

Table 2: Discriminator Architecture.

4.1.1 Generators

There were two types of generator architectures that this paper tested: U-Net and Res-Net. Their
architectures are shown in Table 1.

Instance normalization is performed for all layers of the U-Net architecture aside from the last
layer. The convolution layers use a leakyReLU activation function characterized by o = 0.2. The
deconvolution layers use a ReLU activation function. The first three deconvolution layers use dropout
with a probability of 0.5. Aside from the last deconvolution layer, concatenation is performed with
the opposite convolution layer (deconvolution layer 1 is concatenated with convolution layer 7, 2
with 6, and so on). The last step for this architecture is to use a tanh activation function.

Instance normalization is performed for all layers of the Res-Net architecture and the ReLLU activation
function is used for all layers. The residual block consists of two 3x3 convolutions with a stride of 1
with instance normalization and ReLU activation in between. The last step for this architecture is to
use a tanh activation function.

4.1.2 Discriminators

Discriminators Dy and Dy are the same for the purposes of this task. The architecture for the
discriminators is shown in Table 2.

LeakyReLU is used for each layer and is characterized by o = 0.2. Instance normalization is
performed for all layers except the first and last layer.

4.2 Loss Functions

GANime is trained on a few different loss functions, which are described below.

4.2.1 GAN Loss

The standard GAN loss that was used in CycleGAN is the saturating loss, which is why GANime
does not use it. Instead, I test using the loss functions in Equations 1 and 2. Equation 1 is the
non-saturating loss function for a generator, so training occurs much more quickly at the beginning
since the generator initially performs poorly at generating an image in the target domain and the

| LSGAN, Res-Net | LSGAN, U-Net | GAN, Res-Net
FID Score | 298.98] 252.80 \ 287.24
Table 3: FID scores of models.

gradient of 1 is largest at 0. Equation 2 is tested because [14] states that the LSGAN loss function
produces the smallest loss given enough time to train.

‘CGAN (G7 DY7 Xa Y) = Ey’vpdam (y) [lOg(Dy (y))]
FEznpata(@) [—log(Dy (G(z)))]

L15¢aN (G, Dy, X,Y) = Eynpyyra(w) [(Dy (y) — 1)°]
HEampyura (@) [Dy (G(2))?]

ey

@

4.2.2 Cycle Loss

The cycle loss, as described in [14], is shown in Equation 3. The intuition behind this loss function is
that if an image from one domain is translated into another domain and then back into the original
domain, the translated image should be the same as the original image.

Lcye(G,F) = Eszdam(z)[”F(G(x)) - 1’”1]

3
+Ey~pdata(y)[||G(F(x)) - y||1]
4.2.3 GANime Loss

The loss function of GANime is the combination of the GAN loss and the Cycle loss. The two loss
functions optimized on are shown in Equations 4 and 5.

L1 =Lcan(G, Dy, X,Y)+ Lo = Lrscan(G, Dy, X,Y)+
Laan(F,Dx,X,Y)+ “4) Lrsegan(F,Dx,X,Y)+)
Mceye(G, F) Mceye(G, F)

4.3 Implementation

Each of the models were trained through Amazon AWS with 4 GPUs for 200 epochs, taking 4 days
to train per model. Using random learning rate choices from 1075 to 10~1, I found that a learning
rate of 0.0002 was optimal. Using a similar style of choosing A, I found that A = 10 was an optimal
choice.

The network was made using tensorflow. The github repository can be found at https://github.
com/jgriffi2/CS230-Project.

5 Results

The results for the various models are shown in Figure 3. As can be seen, generator G wants to create
a single image as opposed to panels of images, which causes an undesired output.

5.1 Evaluation

The FID scores of each of the models is shown in Table 3. The LSGAN+U-Net model performed the
best. However, none of the models produced an output that was desired and each of the FID scores
were very large, meaning the generators did not perform well.

5.2 Limitations

The main obstacle of the models of GANime are that the images in domain X contain multiple panels
of images and the images in domain Y contain, usually, a single image. Therefore, the discriminators

Figure 3: Results from experiments; (top) input, (2nd row) LSGAN + Res-Net, (3rd row) LSGAN +
U-Net, (4th row) GAN + Res-Net.

can tell very easily the generated image apart from the target domain if it maintains the qualities of the
original image. This causes the generator GG to generate images that look like a single conglomerated
image and generator I’ to generate images that look like an image that contains multiple panels. This
is, unfortunately, not the desired output of the model.

5.3 Future Work

The best course of action for future work is to use individual manga panels as opposed to whole
manga pages as the domain of X. As discussed in 5.2, the models wanted to produce a single images
instead of multiple self-contained images like manga pages have. Doing this would lead to generated
images that favored the likeness of the original input image more than the current model does.

6 Conclusion

This paper presents GANime, a GAN that uses cycle-consistency to perform on the manga-to-anime
task. Unfortunately, due to available datasets, the manga and anime domains were not similar enough
to one another which caused issues with generating images. However, this work can be expanded
upon in the future to generate better results given a better manga dataset.

7 Contributions

All work was done by Jonathan Griffin.

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

Anonymous, the Danbooru community, Gwern Branwen, and Aaron Gokaslan. Danbooru2018:
A large-scale crowdsourced and tagged anime illustration dataset. https://www.gwern.net/
Danbooru2018, January 2019. Accessed: 22 February.

Y. Ci, X. Ma, Z. Wang, H. Li, and Z. Luo. User-guided deep anime line art colorization with
conditional adversarial networks. 2018.

M. Eitz, J. Hays, and M. Alexa. How do humans sketch objects? 2012.

K. Hamada, K. Tachibana, T. Li, H. Honda, and Y. Uchida. Full-body high-resolution anime
generation with progressive structure-conditional generative adversarial networks. 2018.

Hikaru Ikuta, Keisuke Ogaki, and Yuri Odagiri. Blending texture features from multiple
reference images for style transfer. In SIGGRAPH Asia Technical Briefs, 2016.

P. Isola, J. Zhu, T. Zhou, and A. Efros. Image-to-image translation with conditional adversarial
networks. 2018.

Y. Jin, J. Zhang, M. Li, Y. Tian, H. Zhu, and Zhihao Fang. Towards the automatic anime
characters creation with generative adversarial networks. 2017.

Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, and K. Aizawa. Sketch-
based manga retrieval using mangal(09 dataset, multimedia tools and applications. 2017.

T. Ogawa, A. Otsubo, R. Narita, Y. Matsui, T. Yamasaki, and K. Aizawa. Object detection for
comics using mangal(09 annotations.

E. S. Serra, S. Iizuka, and H. Ishikawa. Mastering sketching: Adversarial augmentation for
structured prediction. 2018.

S. Xiang and H. Li. Anime style space exploration using metric learning and generative
adversarial networks. 2018.

J.Yi, H. Zhang, P. Tan, and M. Gong. Dualgan: Unsupervised dual learning for image-to-image
translation. 2017.

L. Zhang, Y. Ji, and X. Lin. Style transfer for anime sketches with enhanced residual u-net and
auxiliary classifier gan. 2017.

J. Zhu, T. Park, P. Isola, and A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. 2017.

