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Abstract

Distributed Acoustic Sensing (DAS) is an emerging technology that is promising in monitoring
earthquakes with low cost per sensor. We implemented neural networks to denoise the 2D DAS
earthquake recordings. We experimented two architectures: U-Net based models and Xception. The
neural networks were trained on synthetic data and evaluated on field data. And we chose Unetl
as our best model. Using signal-to-noise ratio (SNR) as a denoising metric, we found that Unetl
performs better than the wavelet baseline model in all of the five randomly chosen validation and
field data.

1 Introduction

Earthquake signal denoising is of great concern to seismologists to improve the the data quality and benefits subsequent
analyses. Traditionally, 3D geophones are widely used to measure earthquakes. Zhu et al. 2019 showed that signals of
geophones can be denoised using deep learning models. Recently, a new technology of distributed acoustic sensing
(DAS) has been emerging as a possible alternative to the traditional geophone sensing arrays. DAS utilities a fiber-optic
cable with an interrogator to measure the strain along the fiber, which enables us to perform ground motion monitoring
with a dense channel distribution. Moreover, the cost per sensor for DAS is much lower than that of traditional geophone
arrays. However, we have seen that DAS recordings can be contaminated with strong ambient noise and instrument
noise. Herein, we aim to apply the deep learning approach to denoise DAS recordings and hence improve the data
quality for subsequent analysis such as earthquake location and earthquake detection.

A DAS recording has two dimensions, one corresponding to the time lapse and the other to the channel number (spatial
location). In other words, a recording can be viewed as a 2D grey scale image containing both signal and noise. The
DAS fiber we use here locates in the San Andreas Fault. In total we have one month of recordings, during which more
than one hundred earthquakes occurred in the surrounding area. Figure 1 shows one example of our DAS recording.
The input to our neural network will be the Short Time Fourier Transform (STFT) of the original time and space image.
The STFT results are in three dimensions (time, frequency and sensor index) and have two channels (real and imaginary
part of the STFT). The outputs would be two masks in the STFT domain corresponding to the recovered signal and
noise respectively. Each pixel of the masks have value of a float number between zero to one, with zero to be pure noise
and one to be pure signal. The loss function is a cross-entropy loss.

2 Related work

The U-Net architecture has shown to to be fast and precise in bio-medical image segmentation (Ronneberger et al.,
2015). Zhu et al., 2019 used the U-Net architecture to develop a deep learning denoisier for 1D time series of the
traditional geophone data. The authors trained their neural networks on various types of noise and earthquake signals
and demonstrated that with their deep U-Net neural network, better signal-to-noise (SNR) ratio has been achieved
compared to traditional denoising approaches (normal Spectral filtering and GCV denoising), while minimizes changes
in the waveform shape of interest. Both of our work aim to denoise earthquake recordings. However, in our case, since
we have 800 sensors along the fiber to record signal at the same time, we have one more dimension than their data.
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Moreover, they have an advantage of having an easy access to millions of clean signal as the ground truth, while in our
case, we have only one hundreds of earthquake recordings and non of them are clean. This is our biggest challenge.

The DeepLab v3+, similar to the U-Net, also employs an encoder-decoder based structure and showed the state-of-
the-art performance in image segmentation problems [3]. DeepLab uses multiple encoders including MobileNet[4],
Xception[5], and ResNet-101 [6]. When implementing with Xception as encoder, DeepLab model has a better
performance for image segmentation. This architecture may be promising for our earthquake denoising problem as well.

3 Dataset and Features

The SAFOD DAS data are collected with a 1D fiber down to a depth of 864m in the subsurface. Due to a failure of the
loop at the end of the fiber, we limit our analysis to a depth of 800m. Along this depth, we have 800 channels with 1m
spacings continuously monitoring ground motion during three weeks from 21 June, 2017 to 10 July, 2017. During this
period, around 100 earthquakes occurred within a radius of 63 km away from the fiber. Figure 1 shows an example of a
SAFOD earthquake recording. The vertical axis is channel number (No.0 is the channel on the ground and No.800 is the
channel at the very bottom of the fiber.) The horizontal axis is the time axis. The sampling rate of the data is 100 Hz.
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Figure 1: An example of SAFOD earthquake recordings

Since we do not have clean DAS signal and DAS signals share similarities with the geophone data. We synthesized
clean DAS signal by shifting geophone signal along the depth according to the P and S wave velocity model along the
fiber given by Ariel at el., 2019. To mimic real DAS signal, we added randomness on the the synthetic data (we added
random small time shifts along the depth, randomly kills signal of some randomly chosen channels and add random
amplitude factors for each channel). Figure 3 shows an example of the synthetic DAS data using one of the geophone
data. Then we added randomly chosen noise data from our field dataset to the synthetic clean signal to get synthetic
noisy data. We preprocessed the recordings by performing the STFT and we normalized our data for each of the 800
traces by their corresponding L-2 norms. In total, we have 1500 synthetic samples in the training set each with 50
seconds. In order to let neural networks see different shifted versions of signal and different noise, for each of the 100
epochs, we randomly windowed 20 seconds of those 50 second recordings and randomly select 20 seconds noise from
our one month recordings to make synthetic data. And we select the hyperparameters based on the performance on the
140 validation data. And we use 140 test data and field data to evaluate the performance of our model.
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Figure 2: An example of the synthetic DAS data using one of the geophone data

4 Methods

Convolution Neural Networks (CNN) encoder-decoder architecture is able to learn efficient representation in computer
vision tasks. Our encoder network maps the preprocessed 3D STFT spectrum, which contains two channels (real and
imaginary parts of the STFT), to low-dimension features. The decoder network maps these features to generate output
with the original dimension. Since the outputs are signal and noise masks with elements between zero and one, our task
is equivalent to predict the probability of being signal for each pixel of the inputs. Thus, we adopt image segmentation
approaches. We use the cross-entropy loss function to optimize our model:

L(p,y) = —[ylog(p) + (1 — y)log(1 — p)]

We developed our training framework in TensorFlow and compared the performance of two classic image segmentation
architectures: one is U-Net [2], the other is DeepLab with Xception as backbone [3].
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4.1 U-Net based architecture

The U-Net based architecture consists of a series of fully convolutional layers with 10 descending encoding and 10
ascending decoding layers. Skip connections was implemented to improve the convergence of training and prediction
performance by passing low-level features into decoder. Figure 3 shows the U-Net architecture.
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Figure 3: U-Net Based Network Architecture

4.2 Xception based architecture

We also explored DeepLab v3+, a state-of-the-art image sementation model, with Xception as a backbone model. Its
encoder-decoder architecture uses Xception as an encoder module to extract multi-scale information and a simple
decoder module to refine the results.

5 Experiments/Results/Discussion

5.1 Hyperparameter tuning

For U-Net based model, we experimented three different learning rates, le-2, 1e-3 and le-4, with the same decay rate
of 0.95. Our GPU memory can only fit a maximum batch size of two. As a result, We tried both batch sizes of two
and stochastic gradient descent. To avoid overfitting, we added dropout for Unetl and Unet5. When training them, we
added pure noise in the training set to let the networks learn noise patterns. Table 1 shows both training and validation
loss for all combinations of hyperparameters we tested. Among the six, Unetl performs the best with the lowest training
and validation loss. We found that a higher learning rate tends to fasten convergence and results in a lower training
error. And a batch size of two helps convergence because of the batch norm technique we implemented in our U-Net.
Comparisons of Unetl and Unet4 show that dropout decreases variance. Similarly, dropout brings down the variance of
UnetS compared to Unet6. The validation and training loss for Unetl is the close, which indicates that Unet1 does not
overfit the training data.

For Xception based model, we experimented three different learning rates, le-2, le-3 and le-5, with the two decay
rate of 0.95 and 0.98. Our GPU memory can only fit the maximum batch size of one. As a result, We used stochastic
gradient descent. And to avoid overfitting, we added weight decay for Xception 1, 2 and 3. Table 2 shows training
loss for all combinations of hyperparameters we tested. Among the four, Xceptionl performs the best with the lowest
training loss. We found that a lower learning rate tends to help gradient decent to achieve lower training error. In order
to overfit one training example, We babysat it by adjusting network dimension and implementing new output layer.
However, because of the complexity of the Xception, the model is hard to converge. We failed to overfit one training
example and train a effective model.

In conlusion, U-Net is a better network structure for our project compared to Xception. we chose Unetl as our best
model, which has a test loss of 0.347.

5.2 Model evaluation

We chose the signal-to-noise ratio (SNR) to evaluate the performance of our model. The SNR is calculated as:
SNR = 1010910 (Usignal/a'noise)

where 04;gnq; and 0p,0ise are the standard deviations of waveforms before and after the first arrival. We chose wavelet
denoising filter in python skimage package as our baseline model [7], which is commonly used for denoising images.
Figure 5 shows two field earthquake recordings, FieldDatal and FieldData2, used to test the performance of our model
in real world. Comparisons of (a) and (b) show that for the FieldDatal, U-Net has less signal leaking problem than the



baseline model. And U-Net did better on removing the noise before earthquake arrival (around 10.9s). Figure 6 (c) and
(d) show respectively in spectrum and time domains signal is well recovered with Unetl1 for sensor #1 of FieldDatal.
Figure 5 (c) and (d) show that for FieldData2, Unet also performs better than baseline with less signal leak problem and
more noise energy are removed from recovered signal. In table 3, we show and compare the SNRs before and after
denoising with the two models on two field data and three randomly selected validation data. The recovered signals by
U-Net model have higher SNRs of the three validation data than those by the baseline model by a factor of 5.416 on
average. While for the three field data, the factor is 2.016. In all five cases, U-Net achieves better SNRs of the recovered
signal.
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Figure 4: Denoising performance on an unseen synthetic seismograms. Real noisy signal are plotted in panels (i).
Panels (ii) shows the denoised signal. The recovered noise is shown in panels (iii).
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Figure 5: Denoising performance on two SAFOD seismograms, (a, b) FieldDatal; (c, d) FieldData2: (a, c) Baseline
model; (b, d) U-Net based model. Real noisy signal are plotted in panels (i). Panels (ii) shows the denoised signal. The
recovered noise is shown in panels (iii).

6 Conclusion/Future Work

We implemented both U-Net and Xception architectures on the 2D synthetic DAS recordings. We found that U-Net is
much easier to train and converge than Xception because of the simplicity of the model. After tuning hyperparameters,
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Figure 6: Denoising performance on (a, b) unseen synthetic seismograms (trace 1 of seismograph shown in Figure 4);
(c, d) real SAFOD seismograms(trace 1 of FieldDatal shown in Figure 5): (a, ¢) time-frequency domain; (b, d) time
domain. clean signal, real noise, and noisy signal are plotted in panels (i) (ii) (iii). Panels (iv) show the denoised signal.
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Model Hyper-Parameters Cross-entropy loss
Learning Rate | Batch Size | Dropout | Include Zero Signal | Training | Valid
Unetl le-2 2 0.2 Yes 0.318 0.336
Unet2 le-4 2 0 No 0.342 0.441
Unet3 le-3 2 0 No 0.320 0.661
Unet4 le-2 2 0 No 0.321 0.723
Unet5 le-2 1 0.2 Yes 0.337 3.077
Unet6 le-2 1 0 No 0.340 174.427
Table 2: Xception Based Model Performance
Model Hyper-Parameters Cross-entropy loss
Learning Rate | Batch Size | LR Decay Rate | Weight Decay Training
Xceptionl le-5 1 0.98 le-8 0.529
Xception2 le-3 1 0.99 0 0.644
Xception3 le-3 1 0.95 le-4 0.777
Xceptiond le-2 1 0.98 le-8 0.785
Table 3: SNR Performance With Baseline and Best Model
Data set Noisy Signal SNR (dB) | Denoised Signal SNR (dB) | Baseline Model SNR (dB)
Validation Data Sample 1 3.78 18.18 3.2
Validation Data Sample 2 1.87 18.46 3.31
Validation Data Sample 3 0.84 14.46 2.50
Field Data Sample 1 0.77 3.69 2.21
Field Data Sample 2 6.52 13.00 5.50

we chose a U-Net model with the least training and validation loss as our best model. Wavelet denoising algorithm is
chosen as the baseline model. We compared the performances of the two models on five randomly selected synthetic
and field data. The recovered signals by U-Net model have higher SNRs of the three validation data than those by
the baseline model on average by a factor of 5.416. The factor for the two field data is 2.016. In all five cases, U-Net
achieves better SNRs of the recovered signal. We found that in all cases, the U-Net model achieved higher SNRs. For
future work, we could use more synthetic data to train our models, so that new models learn more general cases to
improve their performance on field data. Moreover, with larger GPU memory, we would experiment larger batch sizes

with batch norm.



7 Contributions

All three authors contributed equally in architecture selection, training and testing the model. Source code specific to
this project can be found at: https://github.com/syyuan93/deep_learning_denoise_SAFOD.git.
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