Applying Conditional Generative Adversarial Neural
Networks (cGANs) to Generate Realistic Microarray
Gene Expression Data

Lawrence Bai
Immunology Program, Stanford University School of Medicine, Stanford, California, USA
lawrence.bai@stanford.edu

Madeleine Scott
Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
scottmk@stanford.edu

Abstract

High-throughput technologies have allowed researchers to uncover biological dif-
ferences between normal and diseased cells. Examining changes in gene expression,
in particular, has led to discoveries of novel disease mechanisms and therapeutic
targets. However, this data requires patient tissue samples obtained through inva-
sive biopsies. Such biopsies are a financial burden to the researcher, and can lead to
physical and data privacy issues for the patient. To address these shortcomings, we
used conditional GANs to generate realistic cancer patient sample gene expression
data using publicly available microarray data. We demonstrate that generated data
can be used identify biologically relevant differences between cancer and healthy
tissue that would have otherwise been lost.

1 Introduction

Gene expression defines the phenotype of a cell, as it is the consequence of cumulative genetic
and epigenetic alterations. The DNA microarray was developed in the late 1990s as a method of
measuring the expression of all genes in a sample. The NCBI Gene Expression Omnibus (GEO) is a
repository of human microarray datasets that are derived from samples from tissue biopsies or blood
[Edgar et al., 2002]. The conditions studied range across all categories of diseases, including chronic
diseases, infectious diseases, and cancer. One fundamental problem in biomedical research is the
low number of observations available for each disease of interest, mostly due to a lack of available
biosamples, high costs, or ethical reasons. Given these barriers, we believe that augmenting real
observations with generated in silico samples could lead to more robust and reproducible analysis
results. We developed conditional single-sample generative adversarial neural networks (cssGANs)
for the realistic generation of microarray samples. This work was based on a recently published
method that generated single cell RNA data [Marouf et al, 2018]. With our method, it is possible
to augment sparse sample populations which in turn can improve downstream analyses such as
biomarker detection and improvement of classifiers while reducing the number of patient samples and
thus research costs. In particular, the generation of sample-level gene expression data could improve
biological analyses for rare diseases, in which samples are scarce.
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2 Related work

In practice, in silico generation has been successful in computer vision when used for ’data augmenta-
tion’, where these generated samples can artificially increase the number of observations [Shrivastava
etal., 2017]. Current methods of choice for photo-realistic image generation use Deep Learning-based
Generative Adversarial Networks (GANs) [Goodfellow et al, 2014; Isola et al, 2017] and Variational
Autoencoders (VAEs) [Kingma et al, 2013]. GANs involve a generator that learns to output realistic in
silico generated samples, and a discriminator that learns to spot the differences between real samples
and generated ones. The ‘adversarial’ training procedure allows for these two neural networks to
compete against each other, ideally until the discriminator cannot distinguish original from generated
data. The development and usage of GANs and VAEs for omics data augmentation is scarce. As a
proof of concept, Marouf et al. has focused on the generation of single cell RNA (scRNA) sequencing
data. Using their method, they were able to successfully generate data for distinct immune cell
subsets found in peripheral blood.

3 Dataset and Features

We mined the GEO database in order to collect tissue biopsy microarray gene expression samples
from cancer patients and healthy tissue controls. In total, we collected over 7000 samples from across
more than 50 datasets in 4 different cancers (colorectal, breast, pancreatic, and lung). For our proof-
of-concept, we focused on colorectal cancer as it had the most amount of data (2945 samples across
27 datasets). Since these datasets were obtained across a heterogeneous landscape (e.g geographic
location, hospital setting, platform technology, etc.), we use a well-established batch-normalization
technique, ComBat [Johnson et al, 2006], before proceeding to our model. After intersection across
genes, we are left with a little over 3000 genes for data augmentation.

4 Methods

Conditional Single-Sample Adversarial Neural Network (cssGAN)

We adopted the model from the original authors’ paper [Marouf et al, 2018] and modified their
open-sourced code to fit our data. In their paper, their best-performing model was a GAN that
minimized the Wasserstein distance [Arjovsky et al, 2017], using two fully-connected (FC) neural
networks with batch normalization (Figure 1). The generator is an FC network with three hidden
layers of increasing size (128 to 1024 nodes), each layer containing batch normalization and ReLU
activation; the output is a library-size (number of genes) normalization layer. The discriminator is
also an FC network with three hidden layers, but of decreasing size (1024 nodes to 1 node) with a
final output of 1 node.

ComBat Normalization

Each single cell RNA experiment generates data from over 50,000 cells. However, microarray experi-
ments often profile only ten or twenty samples at a time. Therefore, we needed an additional strategy
to combine multiple microarray datasets to obtain enough training data. ComBat normalization has
been shown to remove batch effects in microarray datasets inherent to heterogeneous conditions such
as different platform technologies, geographic location, etc. ComBat uses empirical Bayes to account
for adjusting batches with small sizes (since biological samples are difficult to obtain, many groups
do not have the luxury to collect thousands of samples). We use ComBat to normalize across each
specific tissue, leaving distinct clusters by tissue type, but eliminating sub-batches within a specific
cancer.

5 Experiments/Results/Discussion

Hyperparameter tuning

We first adopted the final learning model from Marouf et al. as described above. We then tuned
different hyperparameters to attempt to improve the baseline training model. We changed learning
rate logarithmically from 0.1 to 0.00001, and our final model used a learning rate of 0.0001, decaying
to 0.00001. We also tried tuning batch size in a log(2) scale (2 -128), and we chose 128 as our batch
size. We left our distance metric as Wasserstein distance, given literature on the value of using this
compared to traditional GAN loss functions.
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Figure |. cGAN workflow adopted for microarrays.We use two

fully-connected neural networks for our generator and discrimi-
nator. In the generator, there are three hidden layers of increas-

ing size and vice-versa for the discriminator.

Model evaluation

We recognize that evaluating the quality of generative models can be difficult, especially in biomedical
data in which we hope to preserve the underlying biological architecture (i.e. gene-gene interactions)
in generated data. Thus, we used a variety of qualitative and quantitative measures to evaluate our
generated data.

Model Evaluation: Clustering using tSNE and gene-gene correlation

One of the first evaluations we made was to qualitatively visualize how well the generated data
clustered after training. We use uniform manifold approximation and projection (UMAP) [Mclnnes,
Healy, and Melville 2018] to visualize the real and generated data. In our real data, healthy samples
formed a distinct cluster next to diseased samples. Our generated data was able to recapitulate these
cluster structures (Figure 2A, top right). More importantly, the clustering was not due to a random
generation of features added to distinguish the two clusters; CLCA4, a gene highly expressed in
the colon, retained its expression gradient in the generated data (Figure 2B, bottom right). This
suggests that gene-gene interactions and networks were learned and retained when generating new
data. Inter-gene dependencies and correlations are vital biological architecture that are needed to
understand gene-regulatory networks. We first randomly split the real data and plotted correlation
values for each gene, resulting in a high positive correlation (R=0.97; Figure 2B, top). Comparing all
generated data versus real data, we retained high correlation (R = 0.94; Figure 2B, bottom), further
corroborating that our cssGAN was able to create highly synonymous data.
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Model Evaluation: classification performance
Next, to more quantitatively evaluate our neural network model, we use a Random Forest classifier
using 5-fold cross-validation and three mtry values to classify generated vs real data. We measured



evaluated the random forest model with area under the curve (AUC). The ability of the random forest
model to distinguish between real and generated degrades over training time (Figure 3). In other
words, our discriminator slowly loses the ability to distinguish generated data from real data over
time. This is important, as we want our generated data to be representative of the distribution of
real-world data (assumed to be based on our real data).
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Figure 3. Model evaluation using random forest classifier to predict accuracy of discriminator during training. In the beginning of the
model, the discriminator easily distinguishes generated data from real data. Over the course of training the cGAN, it becomes
increasingly harder for the discriminator to correctly distinguish generated and real data, as measured by ROC.

Model Evaluation: Downsampling Analysis

Finally, we evaluated the biological usefulness of the generated samples when compared to real data.
We downsampled the number of healthy samples to recapitulate a potential real-world scenario in
which large number of samples are difficult to obtain. We then trained the cssGAN this downsampled
dataset. We performed differential gene expression analysis using log-fold change in three scenarios:
1) using all real data (ground truth); 2) data with small number of healthy samples; 3) data from 2)
but replenishing healthy samples with data generated from the downsampled data (Figure 4). The
downsampled data alone is unable to correctly identify genes that are different in disease and healthy
samples. However, using generated healthy samples from the cssGAN trained on the downsampled
data, we were able to regain the same list of differentially expressed genes as ground truth. We also
qualitatively evaluated the analysis using UMAP clustering (Figure 5). When downsampled, healthy
samples no longer maintain their own distinct cluster (Figure 5, middle), but adding generated healthy
samples can bring back the two distinct clusters. Interestingly, the model was able to generate healthy
data even during extreme class imbalance between the two groups, suggesting that the network is
able to learn gene-gene interactions from the entire dataset.

o Figure 4. Model evaluation using differentially expressed genes between healthy
and disease samples. Using all real data, we first calculate differentially expressed
(DE) genes between disease and healthy, at a p-value < 0.0000 1. Downsampling
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Figure 5. Model evaluation using downsampling analysis. Using clustering algorithms like UMAP, we show that downsampling of
healthy samples results in the disappearance of a distinct cluster between healthy and disease groups. The replenishment of healthy
samples using GAN-generated data trained using downsampled data restores clusters.

6 Conclusion/Future Work

Based on our findings, extrapolating beyond single-cell data and using whole-sample gene expression
data to generate new data is feasible and could potentially be useful in the short-term for researchers
across biological fields. Overall, our model evaluations suggest that our cGAN was able to: 1)
retain gene-gene interactions as it created new data; 2) learn to generate better data that becomes
less distinguishable from real data; and 3) learn gene architecture of a particular class even after
downsampling. While our findings are encouraging, there are still some questions left unanswered.
Can this model be applicable across different diseases, especially outside of cancer, in which samples
are notoriously difficult to obtain? For rare diseases, how little data do we need in order to successfully
train the cGAN? Would it be possible to learn with less data if we had several more disease clusters
as anchor points? Ultimately, we would want to validate our findings in a biological setting—we may
want to perform wet lab experiments on potential genes of interest that become significant through
the help of cGAN.

7 Contributions

LB and MS contributed equally to this project. In terms of breakdown, MS had more experience
working in GPU space and Python, while LB had more experience in R and grant writing, so MS did
more coding while LB gathered the generated data to be visualized and presented via this report and
the poster.

Code is uploaded here: https://github.com/scottmk777/tissueGAN/
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