Predicting Gene Expression Using Epigenetic Markers on the

Genome
Sunil Bodapati Timothy Daley Sonja Johnson-Yu
Department of Bioengineering Department of Statistics Department of Computer Science
Stanford University Stanford University Stanford University
bodapati@stanford.edu tdaleyOstanford.edu sonjyu@stanford.edu
Abstract

Gene regulation is a complex process by which transcription factors and epigenetic factors modulate gene expression
to control protein concentrations. Previous works have examined this regulation either indirectly or by using
simple linear models. We propose a deep neural networks approach to predicting gene expression to account for
combinatorial regulation and epigenetic interactions. We used a four layer fully connected neural network to predict
normalized gene expression from normalized chromatin openness. We found that the though the training error can
be made to be small, the generalization error is high, even with various regularization techniques. This indicates that
we are missing pertinent information in our regression problem.

1 Introduction

The human genome contains sequences that directly code for proteins (coding regions), as well as sequences that regulate
protein expression levels (non-coding regions). Various molecules can bind to these non-coding regions, blocking or facilitating
transcriptional access in a process known as epigenetic regulation. Epigenetic regulation plays a critical role in healthy cells (X
inactivation [7]), as well as unhealthy cells (cancer [10], a host of developmental disorders [6]), making it an important process
to understand. Our project aims to illuminate the role of non-coding epigenetic patterns on gene expression. Specifically, we are
interested in how epigenetic modifications on genetic sequences near or in a gene affect the corresponding expression of the
gene. Our goal is to obtain more accurate model for predicting gene expression from epigenetic markers.

2 Related work

A directly related work [3] showed that most gene expression can be predicted using a linear L1 penalized regression model.
Though, the key to the model is the construction of the features based on prior knowledge of gene regulatory networks, cell
type specific transcription factors, and the presence of corresponding transcription factor binding motifs in regulatory regions.
They were able to acheive an B2 ~ 0.8 on on a chosen subset of ~5,000 genes in a held out cell type. Specifically, the authors
created 5000 separate linear regression models for their target genes of interest. This model ignores combinatorial effects of gene
regulation, and therefore we hypothesize that a deep neural network may better predict gene expression. We also hypothesized
that epigenetic machinery in a cell is agnostic to genes, allowing us to create a single model that will be able to generalize across
all genes.

Recently, there has been an explosion of applications of deep neural networks in genomics, though few directly related to our
goal. Most commonly is the use of convolution networks and recurrent networks to predict epigenetic information [5, 8, 12]
based only on DNA sequence. [2] used deep neural networks in a multi-task regression problem, but did not use epigenetic
features in their regression, using only the gene expression across a wide range of different cell type to predict a target gene
expression. Our hope is that the epigenetic information is critical to prediction, something previous work has for the most part
ignored. [11] used CNNs to predict whether target gene expression is above or below the median based on the measurement of
five epigenetic marks within 5,000 base pairs up- and down-stream of the TSS. There are a few problems with their approach.
Their choice to convert a regression problem into a classification problem is meaningless, as there is no inherent meaning to
whether gene expression is above or below the median, but large deviations from the median are biologically meaningful (e.g.
differential expression [9]); the five assays they use are complicated and expensive to perform on new cell types; and they ignore
possible distal regulation.

CS230: Deep Learning, Winter 2019, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

distribution of binned openness Distribution of gene expression o W

15

Density
Density
1
Second component: 3.1% of variance

05

0.0

T
[5 10 15 [2 4 6 8

log(binned openness + 1 log(gene expression + 1]
o R) a0 P ! First component: 3.77% of variance

Figure 1: Distribution of openness (left) and gene expression (middle). The far right shows the PCA projection of biological
samples based on gene expression data.

3 Dataset and Features

Our primary dataset contains information obtained by using ATAC-seq on 201 unique cell types. ATAC-seq works by using a
mutated hyperactive transposase that will randomly insert a specific sequence into the genome at extremely high frequency. Any
region of the DNA that is bound by chromatin will block the transposase activity in that region, while regions that are open or
have transcription factors binding will be open to the transposase. Thus, when the transposase markers are pulled down and the
cell DNA sequenced, regions of the genome that have extremely high reads counts of the transposase sequence are comparatively
open versus regions of the genome that have very few transposase reads. Open regions can be thought of as a proxy for a host of
possible epigenetic activity [1]. Our dataset contains genome-wide openness data for 201 experiments of various cell types,
summarized into bins of high openness and paired with (meaning from the same cell type and produced by the same lab) the
gene expression data of 17,794 genes. Thus our openness dataset is of shape of approximately 200k genetic regions x 201 cell
types, and our target gene expression dataset is of 17,794 genes x 201 cell types.

4 Data Processing

The epigenetic data is in the form of openness signal in peaks, where peaks are identified by overabundance from a background
negative binomial model [4]. To compare these signals across all genes fairly we binned the peaks as a function of distance from
each gene’s transcription start site (TSS). Specifically, we created one thousand bins for the 1 million base pairs upstream the
gene’s TSS (in the same direction the gene is transcribed) and one thousand for the 1 million base pairs downstream (in the
opposite direction that the gene is transcribed) and computed the signal of all peaks in these bins, divided by the length of the
peak. Our output signal is gene expression for 17,794 genes in 201 cell types. Therefore the full X tensor is 17,794 (genes) x 201
(cell types) x 2000 (bins) and our full Y tensor is 17,794 (genes) x 201 (cell types).

The distribution of the gene expression is approximately normal, with an overabundance of zeros (see figure below). In the
openness data, the vast majority of entries are zero (see figure below). This is expected as most of the genome is not involved
in gene regulation. Due to the extremely large range of signals, we compressed this down on the log scale as well. As
pre-preprocessing for both, we normalized each gene and openness by subtracting off the mean and dividing by the standard
deviation, computed across all 201 cell lines for each gene.

We used Principal Components Analysis to plot the gene expression data of the 201 cell lines along the top 2 axes to see if there
were any obvious batching effects or outliers. One sample seems to stand out as an outlier, sample 91. This is leg muscle from
fetal tissue, though there are 3 other samples of fetal leg muscle. This means that the reasons that it is an outlier are unlikely to
be biological. We will need to keep an eye out on this sample in the future.

5 Methods

Train/Dev/Test Set Generation: Our full X tensor was 17,794 (genes) x 201 (cell lines) x 2000 (bins), a data structure that took
~170GB of memory in numpy binary format. To allow for easier handling for training, we reformatted this structure into a
3576594 (genes) x 2000 array, randomized this array by its indices, and created our train/dev/test sets via 90/5/5 splits. Our train
set was further split into 100 different files to allow for easier traversal of the X tensor during training. We repeated this process
for our Y tensor, ensuring that the X to Y relationship was maintained during randomization.

2

Training Parameters: All neural networks were trained using the Adam optimization algorithm for backpropagation. Our
initial tests with a set of 8,000 data points indicated that a learning rate of 0.001, B1 = 0.9, and B2 = 0.999 performed well in
optimizing the neural network. We chose a batch size for training of 10,000 samples.

Creating a Baseline: We first implemented an L.1 Lasso Regression comparable to the regression used by Duren et al. to serve
as a baseline. We created a 1 layer fully connected network with an L1 regularized MSE cost function with regularization
parameters of several orders of magnitude, starting with 10? and ending with 10~5, and trained until convergence with an epsilon
of 107° or 150 epochs, whichever came first.

Fully Connected Model: We implemented a 4 layer fully connected network, with each layer containing 1000 nodes and the
last layer being the regression output [1000, 1000, 1000, 1]. We trained until convergence with an epsilon of 10~ or 150 epochs,
whichever came first.

Regularization Methods: Our regularization efforts followed four parallel paths: L1 regularized loss, L2 regularized loss,
dropout layers, and a different architecture. We stored the train and dev MSE at each epoch for each model that we trained.

L1/L2 Regularized Loss: We trained our fully connected 4 layer network using an L.1/L.2 penalized MSE cost function until
convergence with an epsilon of 1075 or 150 epochs, whichever came first. We tested with the same range of lambdas as the
Lasso model.

Dropout Layers: We trained our fully connected 4 layer network using an MSE cost function and a dropout layer at each layer.
We trained until convergence with an epsilon of 10~° or 150 epochs, whichever came first. We used the same dropout probability
across all layers per model, and varied the probability from 20% to 80% in increments of 5%.

Different Architecture: We trained on a network with a vastly more limited architecture, with 1000 nodes in the first layer, 500
nodes in the second layer, 250 nodes in the third layer, and the one node for the regression output layer [1000,500,250,1]. This
reduced model contained ~2.6M parameters vs the ~4M parameters of the previous fully connected models described above.
We used an unregularized MSE cost function and trained until convergence with an epsilon of 10~° or 150 epochs, whichever
came first.

6 Experiments and Results

Given that we normalized the mean of our Y tensor to be 0 with a variance of 1. Zeroing
out the weights would yield an MSE of approximately 1.

LASSO: Training and Dev MSE vs lambdas

- Tain -

6.1 Baseline Results

Our LASSO model is either extremely overfit with small lambdas (<10E-6) or is , *~
extremely underfit with larger lambdas (>10E-5). Across all lambdas, the dev error ~ ~ /
remained high, indicating that the linear model does not generalize well. It is interesting =
to note that our lowest lambda was able to achieve quite a low training MSE, indicating ‘ e
that a simple linear combination of the gene openness bins is able to encode, albeit in e
an overfit way, the gene expression.

Figure 2: Final training and dev MSE
as a function of penalization parameter
lambda

6.2 Fully Connected Network Results [1000, 1000, 1000, 1]

Our results of the training and dev MSE from a fully connected network indicate a
highly overfit model. We can also take away that we need ~150 epochs of training
before MSE appears to stabilize.

Training and Dev MSE vs Epochs

6.3 L1 Results: WWWWMMW

For lambdas greater than 105, the weights of the network are suppressed greatly, * N

pushing the model to zero the weights, leading to high MSE. For lambdas less than AN A A]
1075, the train MSE looks similar to the unregularized MSE, indicating that there was E) m o
minimal regularization occuring. Interestingly enough, Dev MSE remained extremely
high for all lambdas, indicating that L1 regularization did not help the model generalize
to another dataset, even in the case of some partial regularization (A = 107°).

Epoch

Figure 3: Training and dev MSE for

each epoch of training
6.4 Dropout:

For all dropout rates, our model overfit the training set. Similar to L1 regularized loss, we were unable to get any kind of
regularization or generalization to the dev set.

6.5 Different Architecture [1000, 500, 250, 1]:

L1 Reg Training MSE vs Epoch L1 Reg Dev MSE vs Epoch

- comphobrdealbacscidl -

Epochs Epochs

Figure 4: Training (left) and dev (right) MSE as a function of epoch for L1 penalized neural network predictions.

Train error vs epoch for dropout regularisation Dev error vs epoch for dropout regularisation

055

065

Figure 5: Training (left) and dev (right) MSE as a function of epoch for dropout regularised neural network predictions.

The results from exponentially decreasing the number of neurons per layer show that
decreasing the number of parameters had little effect on the generalization problem that
we needed to combat.

Training and Dev MSE vs Epochs

7 Discussion and Error Analysis S \\

TMAMAMANMANMAAMAANNAANNA

The LASSO baseline indicated that there was no linear combination of bins that could

predict gene expression better than simply zeroing out the weights. Unfortunately, even

with this low bar, our regularization efforts were unable to generalize our model to Figure 6: Training and dev error as a
perform better on a dev set. We were able to achieve some semblance of regularization, function of training epoch for reduced
as witnessed by moderate train MSE, but nothing would improve our dev MSE. Given parameter architecture.

our inability to generalize our model successfully, our test performance was identical to

our poor dev set performance (MSE: ~ 1). We then spent a considerable amount of time analyzing our errors in an effort to
determine next steps.

Epochs

7.1 Error Analysis:

Our first step was to see visually examine how our gene expression predictions fared against the actual gene expression. The best
fit line is not a 45 degree line as we would expect, but is skewed closer to predicting zero. This is evident as there are several
outliers where our model predicted those highly expressing genes as close to zero. Another informative picture of our error is
a scatter plot of the actual gene expression vs MSE. Here, it is evident that our model performed much better for genes that
expressed a moderate amount, but was penalized tremendously for highly expressing genes.

To understand the full effect of these outliers, we plotted a histogram of MSE from each example of the test set. We also plotted
what the MSE would be as we steadily removed the top ranking samples from the test set. These results confirm that our total
MSE is pulled up disproportionately by the presence of outliers, where 30% of samples carry 80% of MSE.

We isolated a large source of the error by visually inspecting the highest MSE points. We saw that the top 10 points in terms of
MSE came from a single cell type (the fetal leg tissue we highlighted previously). We plotted true expression vs predicted and
highlighted points coming from that sample. We can see that clearly that this sample had a much higher variance than the others.

Finally, given that our model was extremely overfit on the training data, we wanted to see if there were certain bins that were
more important to the loss vs other bins. The role of promoters in gene expression makes us believe that the bins near zero

4

Error Analysis: Actual Gene Expression vs Predicted Gene Expression Error Analysis: Gene Expression vs MSE

[] Best Fit Line

SOE+0
00E+0
5.00E+00

0.00E+00 =

Predicted Gene Expression

-5.00E+00

100840 5 o 0) 5) !)1
f— P S - -5.00E+00 0.00E+00 5.00E+00 00E+0

Actual Gene Expression Gene Expression

Figure 7: True test set gene expression versus predicted test set gene expression (left) and gene expression versus MSE (right).

Error Analysis: Test MSE

Full NN predicted vs actual gene expression

1.25E+00
1.00E+00

7.50E-01

MSE

5.00E-01

prodciedExprossion

2.50E-01

0.00E+00
0 50000 100000 150000

Samples Indexes Ranked By Decreasing MSE

Figure 8: The mean square error decreases exponentially as we remove outliers (left). True test set gene expression versus
predicted test set gene expression with observations from sample 91 highlighted in red (right).

should be the most important. To measure bin importance we backpropogated the gradient to the inputs in the full unregularised
model over one epoch. Unfortunately, it looked very much like pure noise.

8 Conclusion/Future Work

Our Lasso Baseline resulted in a dev MSE = 1, indicating that it was no better than

random guessing. Our unregularized fully connected four layer network was extremely ., ... oo avseox
overfit, with a train MSE =~ .15 and a dev MSE ~ 1. Attempts to regularize, using L1
and L2 penalized loss, dropout, and a simpler architecture, were all unsuccessful in
generalizing the model to the dev set, and thus also performed similarly poorly on the
test set. Subsequent error analysis showed that a few samples carried most of the MSE, ‘
with a given cell type performing extremely poorly.) ‘

awse/ax

Given we saw how cell types play such a large role in MSE distribution, our next step
would be to bucket cells that are phenotypically similar and train a model per phenotypic

bucket. Hopefully this would reduce cell specific effects that impact generalization. Figure 9: Gradient weights backpropa-

Additionally, our initial dataset looks at genome openness, but abstracts the actual gated to input layer.

sequence information. We hypothesize that this assumption is not accurate. The specific

sequence that is open or closed is likely important to gene expression due transcription factor binding. Training a model with this
sequence information (either an RNN or CNN to take advantage of the sequential and spatial nature of gene sequences) would
hopefully provide a more accurate prediction. Ideally, we could then use that model to understand what may be happening on a
biological basis.

This project was built in python and pytorch. Scripts available at https://github.com/sbodapati/Epigenetic_Deep_
Learning.

9 Contributions

SB, TD, and SJY conceived of the project with advice from Zhana Duren and Wing Hung Wong (Department of Statistics,
Stanford University). SB, TD, and SJY performed the coding, analysis, and writing.

References

[1] Jason D Buenrostro, Paul G Giresi, Lisa C Zaba, Howard Y Chang, and William J Greenleaf. Transposition of native
chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position.
Nature methods, 10(12):1213, 2013.

[2] Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, and Xiaohui Xie. Gene expression inference with deep learning.
Bioinformatics, 32(12):1832-1839, 2016.

[3] Zhana Duren, Xi Chen, Rui Jiang, Yong Wang, and Wing Hung Wong. Modeling gene regulation from paired expression
and chromatin accessibility data. Proceedings of the National Academy of Sciences, 114(25):E4914-E4923, 2017.

[4] Jianxing Feng, Tao Liu, Bo Qin, Yong Zhang, and Xiaole Shirley Liu. Identifying chip-seq enrichment using macs. Nature
protocols, 7(9):1728, 2012.

[5] David R Kelley, Yakir A Reshef, Maxwell Bileschi, David Belanger, Cory Y McLean, and Jasper Snoek. Sequential
regulatory activity prediction across chromosomes with convolutional neural networks. Genome research, 28(5):739-750,
2018.

[6] Eric J Nestler, Catherine J Pefia, Marija Kundakovic, Amanda Mitchell, and Schahram Akbarian. Epigenetic basis of
mental illness. The Neuroscientist, 22(5):447-463, 2016.

[7] Bernhard Payer, Jeannie T Lee, and Satoshi H Namekawa. X-inactivation and x-reactivation: epigenetic hallmarks of
mammalian reproduction and pluripotent stem cells. Human genetics, 130(2):265-280, 2011.

[8] Daniel Quang and Xiaohui Xie. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the
function of DNA sequences. Nucleic acids research, 44(11):e107-e107, 2016.

[9] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a Bioconductor package for differential expression
analysis of digital gene expression data. Bioinformatics, 26(1):139-140, 2010.

[10] Shikhar Sharma, Theresa K Kelly, and Peter A Jones. Epigenetics in cancer. Carcinogenesis, 31(1):27-36, 2010.

[11] Ritambhara Singh, Jack Lanchantin, Gabriel Robins, and Yanjun Qi. DeepChrome: deep-learning for predicting gene
expression from histone modifications. Bioinformatics, 32(17):1639-1648, 2016.

[12] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning—based sequence model.
Nature methods, 12(10):931, 2015.

