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Predicting network traffic is of high relevance for Internet Service Providers, because it enables them to
prepare for upcoming peak network utilizations better. This report illustrates how recurrent neural
networks, specifically Long Short-Term Memory models, outperform classical autoregressive models
(arima) in forecasting IP flow time series data. The analysis was based on a proprietary data set from
Deutsche Telekom in Germany covering a time period from 2016 until 2019. It will become clear that even a
very simple univariate analysis without extensive data preparation, hyperparameter search, or model
architecture enhancements achieved moderately high performance measures.

INTRODUCTION

Internet Service Providers (ISP) face increasing traffic volumes, especially due to services like Netflix, Google (i.e.
Youtube), Amazon (i.e. Amazon Prime, Amazon Web Services), and Facebook. The usage patterns of these
services significantly influence the overall available capacity of ISP networks. Therefore, the ability to understand
current and predict potential future capacity demands is of utmost importance. The project report at hand aims to
address this need by applying deep learning techniques to predict future network traffic (i.e. IP flow data). More
specifically, the report will show how three different Long Short-Term Memory (LSTM) architectures perform
compared to a baseline auto-regressive integrated moving average (ARIMA) model. Extensive experiments on all
four services (Google, Amazon, Facebook, Netflix) and all four models (one ARIMA, three LSTM) have shown that
the deep learning techniques outperform the baseline ARIMA model, both in predicting the next 24 hours as well as
the next 7 days. All models were trained on flow data which were measured from 2016 till 2019. This propiritory
data set covers all traffic produced by the four observed services which was piped through the German IP
backbone network of Deutsche Telekom AG (DT, largest telecommunications provider in Europe). It became clear,
that especially training on longer past periods, which the LSTM approach was especially suitable for, lead to higher
predicting performance. All models where univariate, hence only took the data traffic at a past time of day or hour
as independent variable into account. Even this very basic approach lead to surprisingly accurate results in
predicting data flows.

RELATED WORK

The world wide web is structured in so called “autonomous systems”. According to Bates et al (1995) an AS “is a
group of IP networks operated by one or more network operator(s) [...]". All ASs have an unique identification
number - for instance DT is identified by AS3320. Furthermore, according to Zseby et al (2004) a “data flow” as
depicted in Figure 1 “is defined as a set of IP packets passing an observation point in the network during a certain
time interval. All packets belonging to a particular flow have a set of common properties”. An extensive overview of
how analysing IP flow data can be used to detect network intrusion was given by Sperotto et al (2010). The authors
claim that this kind of analysis is useful especially when analysing packet payloads is not feasible, i.e. due to
privacy issues. Predicting flow data using machine learning is a challenge with high practical relevance. In this
context, other authors have applied classical methods such as ARIMA (Papagiannaki et al, 2004) for forecasting
but also PCA for better understanding the inner structure of flow data (Lakhina et al, 2004). Nowadays, the state of
the art in time series data analysis are in fact Recurrent Neural Networks (RNN). Especially when analysing larger
unstructured data, the use of RNNs lead to significant enhancements in the field of time series modeling
(Schmidhuber, 2015). Especially when longer time periods are under observation Long Short-Term Memory cells
(Hochreiter & Schmidhuber, 1997) are used, because they keep a "memory" about information that lay further back
in a time series. Although LSTM architectures have been applied to structured time series data (see e.g. Gers et al,
2001) for prediction purposes, the application of this model family to IP flow data has not been widely conducted
yet. This is a clear research gab that motivates the paper at hand.
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DATA

By using specific measurement software, DT’s subsidiary company Benocs collects flow data from within the DT
network. Figure 2 shows that for each data flow Benocs keeps track of the source AS (i.e. Netflix, Facebook), the
handover AS (the last AS that has the actual interface with the DT AS), as well as the NextHop AS (the AS via
which the data flow leaves the DT AS) and the destination AS (i.e. another ISP). In case a data flow is consumed
by a customer of DT, it will be terminated inside of the DT’s AS. Nevertheless, what we cannot see is the full chain
of ASs from source to destination.
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Figure 1: Data flows and packages Figure 2: Autonomous systems (AS) from the view of

Deutsche Telekom as vantage point

The following table 1 shows in each row an hourly aggregate of all flow data in GByte for each AS that is under
observation including the total traffic. The Table has 24002 rows and ranges from 2016-05-31 till 2019-02-25.

time Netflix Facebook Google Amazon Total
2019-02-25 19:00:00 1580.449 483.028 1949.896 917.490 4930.863
2019-02-25 20:00:00 1789.146 476.777 1892.020 1035.780 5193.723
2019-02-25 21:00:00 1596.300 394.469 1668.030 851.168 4509.967
2019-02-25 22:00:00 1210.791 242.347 1247.707 568.717 3269.562
2019-02-25 23:00:00 759.347 128.303 841.293 356.381 2085.324

Table 1: Hourly traffic for each service in GByte

Basically, table 1 and its daily aggregate are the single data input for training the four evaluated models. The
following figure 3 shows a simple line chart that represents the daily traffic that flows through DTs network
separated by the four observed services. It becomes clear that Google is responsible for most of the traffic,
followed by Netflix, Amazon, and Facebook. Furthermore, one can clearly see an uprising trend for all services as
well as some common drops that are probably caused by internal system issues. Additionally, Facebook
significantly increased it capacity demand at the beginning of 2018.
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Figure 3: Traffic in GByte for each of the four observed ASs
MODELING

The following four models take the time series data as univariate input for training. Univariate means, that besides
the time, no other additional independent variables are taken into account. Basically, all models try to predict the
next x units (Days or Hours) given a set of previous observations (e.g. the past 7 days or the past 48 hours). To
compare model performance, the author chose to use the RMSPE metric. RMSPE stands for root mean square

noo_ 2
percentage error and is calculated as follows: ~ RMSPE = A H Y (Z'y—yﬁ)
i=1 !

In the formula y,denotes the actual traffic volumes and y,the predicted values. The RMSPE basically turns the
commonly used RMSE metric into a percentage value in terms of the actual true values (and their scales). Because
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the traffic volumes of the different ASs are of different scales, using the RMSPE helps to compare the performance
metrics among all models and ASs, without the need to normalize the input data. A note on hyperparameter tuning:
in models 2, 3 and 4 the hyperparameters were hand picked by the author and not systematically explored using
grid-search or other approaches. However, even with the hand picked hyperparameters a goal of this project, to
show how deep learning techniques outperform a statistical baseline model, was achieved.

Model 1: “ARIMA” (baseline)

ARIMA stands for “autoregressive integrated moving average” and is a statistical model to forecast time series
data. ARIMA does not build upon neural-network approaches that were covered in the class of cs230. Thereby this
model shall not be explained in detail here, because it only serves as a baseline model to compare with the LSTM
based models. However, it is worth to mention that the author used the Python library PMDARIMA to run the
auto_arima function that finds the optimal hyperparameters (i.e. p, the lag order; d, the degree of differencing; q,
the order of moving average) that leads to the best possible forecasting performance. This auto_arima function also
takes care of the issue of stationarity. A time series is called “stationary” if the observations do not depend on time.
For instance a randomly created time series is stationary, whereas in contrast a time series like the one we are
dealing with in our case has trends and seasonal features is therefore not stationary because time is an influencing
factor. A further comprehensible explanation of the ARIMA modeling approach can be either obtained from the
pmdarima library documentation or alternatively from Duke University (Nau, n.d.). Furthermore, Brownlee (2018)
has published an extensive overview of related classical time series forecasting methods in Python. The work of
Portilla (2018) provides additional suggestions how to implement ARIMA in Python.

Model 2: “Basic LSTM”

In time-series data analysis one cannot simply split (or even randomly sample) the data set into train, development
and test set because this would omit the underlying time dependency. Thereby, model 2, 3, and 4 are trained by
gradually taking period after period into account and predicting the respective next period. Furthermore, a period is
actually not a fixed time window, but a sliding window instead. So for example when predicting 7 days based on the
previous 7 days, as training data input one would take a list of [day 1 to day 7] into account to predict [day 2 to day
8], then [day 2 to day 8] to predict [day 3 to day 9] etc. This approach is called “walk-forward validation” (see i.e.
Brownlee (2016), Perera (2016)). The basic LSTM model architecture is illustrated by the table below. It is the
output of the model.summary() function in Keras - in this case of a model that predicts the next 7 days. One can
see, that the basic LSTM model consists of a single hidden LSTM layer with 200 units. The amount of units was
taken from the suggestions given in Brownlee (2018b). After the hidden layer follows a dense layer of 100 units,
which further condenses the learned features. To actually predict the next 7 days, the model’s last layer outputs a
vector of 7 elements. All hidden layers take a RelLU activation. The optimizer used was ADAM. The model was
trained with a batch size of 16 in 70 epochs. As mentioned above this configuration was hand picked in order to
obtain a train-test loss figure that looks like Figure 4.

Architecture: Basic LSTM 1e8 model loss - Google (basic_LSTM)
Layer (type) Output Shape Param# o —
N\
\
lstm 239 (LSTM) (None, 200) 161600 E N
dense_367 (Dense) (None, 100) 20100 5 \
dense_368 (Dense) (None, 7) 707 N\
4 \
= \\*
Total params: 182,407, Trainable params: 182,407 T \\
2 \

Figure 4: Decreasing model loss after 70 epochs

Model 3: “Encoder-Decoder LSTM”

The model consists of two steps, first an encoder reads the input sequence and encodes it so that a decoder can
read this encoding to make a predictions for each of the output vector elements. As illustrated by the
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model.summary() output below, the model architecture starts with a 200 unit LSTM layer which functions as an
encoder. This layer outputs one value for each unit (200 in total). These 200 output values represent learned
features from the given input sequence. In an example of predicting the next 7 days, the encoder-decoder LSTM
then repeats the encoding for all 7 days. This encoding is then fed into another 200 units LSTM layer that functions
as a decoder, which outputs for each of the 7 days 200 values. Finally, these values are each separately further
condensed by a fully connected layer of 100 units and then a final output layer of 1 unit (leading to 7 values, one for
each day in this example). The Keras TimeDistributed wrapper function allows this combined approach for each of
the 7 predicted values. This approach actually allows the model to learn the context of a day in the prediction
period (e.g. one week), because the weights for each day in a week are shared throughout the learning process.
This addresses the issue of weekend traffic volumes appearing to be different from days within the week.

Architecture: Encoder-Decoder LSTM 1e8 model loss - Google (e_d_Istm)
Layer (type) Output Shape Param# d—
Z "\
lstm 211 (LSTM) (None, 200) 161600 . N3l
repeat_vector 84 (RepeatVect (None, 7, 200) 0 x
1stm 212 (LSTM) (None, 7, 200) 320800 : \
time distributed 167 (TimeDi (None, 7, 100) 20100 g “\‘
time_distributed 168 (TimeDi (None, 7, 1) 101 § “!\
, 1
Total params: 502,601, Trainable params: 502,601 \ A
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Figure 5: Decreasing model loss after 120 epochs

Model 4: “CNN Encoder-Decoder LSTM”

Model 4 is yet another model extension and replaces the encoder of model 3 with a 1-dimensional convolutional
neural network unit. This alteration starts with a first 1-dimensional convolutional layer that directly reads in the
input sequence and projects that onto a feature map. A second 1-dimensional convolutional layer repeats this
mapping in the hope to even better extract latent features out of the input sequence. The output of the second
convolutional layer is then fed into a max pooling layer of pool size 2, which means that a quarter of all values (the
ones with the highest values) will be kept to further feed into the decoder part, which is the same as in model 3. For
both convolutional layers 64 feature maps and a kernel size of three were used. Alternatives were tried by hand in
a hyperparameter optimization process but did not significantly change the overall performance. As stated before, a
more systematic hyperparameter search could lead to even better model performances - although it is already
reasonably high as it will be shown in the results part of this report.

Architecture: CNN-Encoder-Decoder LSTM 1e8 model loss - Google (cnnLSTM)
Layer (type) Output Shape Param# 7
\\

convld_ 93 (ConvlD) (None, 22, 64) 256 = \\\
convld 94 (ConvlD) (None, 20, 64) 12352 5 \
max_poolingld 47 (MaxPooling (None, 10, 64) 0 \
flatten 47 (Flatten) (None, 640) 0 g
repeat_vector_ 96 (RepeatVect (None, 24, 640) 0 T
lstm 231 (LSTM) (None, 24, 200) 672800 \
time_distributed_191 (TimeDi (None, 24, 100) 20100 ‘ \ /'”‘\‘
time distributed 192 (TimeDi (None, 24, 1) 101 1 2

- - I S SN

Total params: 705,609, Trainable params: 705,609

Figure 6: Decreasing model loss after 120 epochs



EXPERIMENTAL RESULTS

AS Unit best RMSPE Model History Forecast
Amazon Days 8.10% basic_LSTM 49 7
Amazon Days 9.61% Arima 7 7
Amazon Hours 25.59% basic_LSTM 168 24
Amazon Hours 54.68% Arima 24 24

Facebook Days 9.20% cnnLSTM 49 7
Facebook Days 9.96% Arima 28 7
Facebook Hours 28.18% basic_LSTM 168 24
Facebook Hours 46.54% Arima 24 24
Google Days 6.38% e d_lstm 35 7
Google Days 7.88% Arima 7 7
Google Hours 34.99% basic_LSTM 168 24
Google Hours 45.26% Arima 48 24
Netflix Days 8.94% basic_LSTM 49 7
Netflix Days 11.52% Arima 7 7
Netflix Hours 46.90% cnnLSTM 120 24
Netflix Hours 152.09% Arima 48 24
Total Days 7.50% basic_LSTM 49 7
Total Days 9.20% Arima 7 7
Total Hours 35.41% cnnLSTM 168 24
Total Hours 59.91% Arima 72 24

Table 2: Best Deep Learning Models vs. ARIMA baseline for each AS (daily & hourly)
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Figure 7: Performance of best model (Total) Figure 8: Performance of ARIMA model (Total)

Table 2 shows the quantitative assessment of a subset of the the trained models. For each AS, for both days and
hours the best LSTM based model and the best ARIMA model is displayed. As mentioned before, the performance
metric RMSPE is used to compare the model performances. One can see that in all cases the LSTM approaches
perform much better than the ARIMA model. Additionally, it becomes clear that the LSTM models took longer past
periods into account to come up with better predictions. Furthermore, one can see that a day-based prediction is
significantly better among all models compared to the hour-based prediction. The interpretation of this, is that the
relative differences of hours is much more volatile than the day-based measurements. Looking at Figures 7 and 8,
one can see a qualitative assessment of the models. For illustration purposes, we can look at the Total traffic and
compare the LSTM and ARIMA approach directly. Furthermore, in this example the ARIMA model clearly fails to
predict values that follow the actual cyclic behaviour of the data. The LSTM models are much more capable of
addressing this pattern and instead of the ARIMA they do not output a linear flat line as prediction.

CONCLUSION & FUTURE WORK

The report has shown that deep learning approaches outperform a statical model baseline. It became clear that
even with a very simple univariate input and without a systematic hyperparameter search nor any data
preprocessing or feature engineering reasonably high performance measures were possible. Although the RMSPE
values suggest a good prediction performance, one would argue that the prediction performance should still be
enhanced further when looking (qualitatively) at the forecasting graphs. This shall be achieved with a more
systematic hyperparameter search and the exploration of further model architectures. However, the conducted
experiments serve as a solid basis for these more explorative next steps. From a practical point of view, it is worth
mentioning that since DT needs to adhere to European Data Privacy regulations, the data flows are not on an
IP-level, but aggregated instead and thereby fully comply with the current legal framework in Europe.
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