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Abstract

Predicting the functional consequences of genetic variants in non-coding regions
is a challenging problem. We used here a deep learning approach, to jointly
utilize experimentally confirmed regulatory variants (labeled variants), unlabeled
variants genome-wide, and more than a thousand cell/tissue type specific epigenetic
annotations to predict functional consequences of non-coding variants. Through
the application to several experimental datasets, we demonstrate that the proposed
method gets very good prediction accuracy,

1 Introduction

Determining the functional consequences of genetic variants is a difficult problem in human genetics.
Our understanding of the genetic code and splicing enables us to identify variants that are likely
functional in protein-coding regions, but accurately predicting the functional effects of variants
in non-coding regions is much more difficult]l. Multiple lines of evidence support an important
functional role for variants in non-coding regions. For example, comparative genomic studies show
that most of the mammalian conserved and recently adapted regions reside in the non-coding part of
the genome. In addition, genome-wide association studies (GWAS) have identified a large number
of non-coding variants that are likely to be involved in both genetic and epigenetic gene regulation
in a highly context-specific manner2. Therefore, accurately predicting both organism level and cell
type/tissue-specific functional consequences of non-coding variation is of great interest.

2 Related work

There are several possible approaches to predict the functional effects of genetic variants3. In the
experimental approach (e.g. massively parallel reporter assays (MPRAs), CRISPR/Cas9- mediated
in situ saturating mutagenesis), the functional effect of a variant is measured by evaluating the
phenotypic consequence of the corresponding sequence alteration (e.g. by measuring the impact of
individual alleles on gene expression in a particular context)4—6. This is considered the gold-standard
approach, but it is quite laborious to perform in a comprehensive manner for large sets of genetic
variants. More often, functional effects are derived using alternative approaches. One commonly
used method is based on an evolutionary perspective, whereby functional effects are assessed by the
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extent of evolutionary conservation at the position of interest. The classical evolutionary approach
relies on accurate multispecies alignment, which makes it challenging to identify certain functional
elements, such as elements constrained only within the human species, although several methods have
been recently proposed to identify primate- or human-specific conserved elements7-9. Evolutionary
approaches also pose an additional challenge, namely they cannot reveal the relevant cell type or
tissue. Another popular approach is the biochemical approach, based on ChIP and/or DNase I
hypersensitivity assays, with the caveat that such biochemical signatures can occur stochastically,
and hence do not completely imply functionality. Therefore, depending on the approach, functional
effect can have different meanings in different contexts. This creates challenges for meaningful
comparisons among the different approaches.

3 Dataset and Features

The dataset we got from Dr. He from Stanford University is ENCODE. The Encyclopedia of DNA
Elements (ENCODE) Consortium is an international collaboration of research groups funded by
the National Human Genome Research Institute (NHGRI). The goal of ENCODE is to build a
comprehensive parts list of functional elements in the human genome, including elements that act at
the protein and RNA levels, and regulatory elements that control cells and circumstances in which a
gene is active.

ENCODE results from 2007 and later are available from the ENCODE Project Portal, encodepro-
ject.org. This covers data generated during the two production phases 2007-2012 and 2013-present.
The ENCODE Project Portal also hosts additional ENCODE access tools, and ENCODE project
pages including up-to-date information about data releases, publications, and upcoming tutorials.

UCSC coordinated data for the ENCODE Consortium from its inception in 2003 (Pilot phase) to
the end of the first 5 year phase of whole-genome data production in 2012. All data produced by
ENCODE investigators and the results of ENCODE analysis projects from this period are hosted in
the UCSC Genome browser and database. Explore ENCODE data using the image links below or via
the left menu bar. All ENCODE data at UCSC are freely available for download and analysis.
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Features example:
DNase-E001

where,

DNase is feature and

E001 is Cell type/Tissue type

Below is the table
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We used deep learning model using labels and features listed above to train to train different models.

Compare the method with existing alternatives. We can start with E116. - try all 1000 features or 8
E116-specific features

Methods Used:

LogisticRegression

DecisionTreeClassifier

KNeighborsClassifier

BernoulliNB

LinearDiscriminantAnalysis

GaussianNB

RidgeClassifier

SGDClassifier

Support Vector Machines
Non-regularized NN model

NN model with L2 Regular-
ization

NN Model with Dropout

Github link for code: https://github.com/ksantosh321/CS230W2019

1) Comparing the results of each classifier

Experiments/Results/Discussion



Test Results

Classifiers Mean ROC (AUC Value) Accuracy
LogisticRegression 0.72 95%
DecisionTreeClassifier 0.57 94%
KNeighborsClassifier 0.57 95%
BernoulliNB 0.5 94%
LinearDiscriminantAnalysis 0.69 96%
GaussianNB 0.68 95%
RidgeClassifier 0.55 97%
SGDClassifier 0.72 95%
Support Vector Machines 0.65 95%

https://github.com/ksantosh321/CS230W2019/blob/master/ROC Curve Classifiers V2 with Train and
Test .ipynb

2) Other NN Models



Test Results
Classifiers Accuracy
Non-regularized NN model 96.8%
NN.model with L2 Regular- 96.3%
ization
NN Model with Dropout 97.1%
NN Model with Dropout

Cost after iteration 1000: 0.12018047107819292
Cost after iteration 2000: 0.11106862917607915

Learning rate =0.3
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On the train set:
Accuracy: 0.970911651589838
On the test set:
Accuracy: 0.9711871750433275



6 Conclusion/Future Work

The current dataset has only 3% as label 1, and we tried weighting as advised to calculate the cost.

Most of classfier and model we trained and tested are getting high accuracy and we have scope of
making ROC(AUC) curve better.

We also tried convolution but we didn’t much improvement ROC(AUC) curve.
Next step would be to get bigger data set and try Convolution and other Neural network.
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